CD5[5] is a cluster of differentiation expressed on the surface of T cells (various species) and in a subset of murine B cells known as B-1a. The expression of this receptor in human B cells has been a controversial topic and to date there is no consensus regarding the role of this receptor as a marker of human B cells. B-1 cells have limited diversity of their B-cell receptor due to their lack of the enzyme terminal deoxynucleotidyl transferase (TdT) and are potentially self-reactive. CD5 serves to mitigate activating signals from the BCR so that the B-1 cells can only be activated by very strong stimuli (such as bacterial proteins) and not by normal tissue proteins. CD5 was used as a T-cell marker until monoclonal antibodies against CD3 were developed.
In humans, the gene is located on the long arm of chromosome 11. There is no confirmed ligand for CD5 but there is evidence that CD72, a C-type lectin, may be a ligand or that CD5 may be homophilic, binding CD5 on the surface of other cells.[6] CD5 includes a scavenger receptor cysteine-rich protein domain.
T cells express higher levels of CD5 than B cells. CD5 is upregulated on T cells upon strong activation. In the thymus, there is a correlation with CD5 expression and strength of the interaction of the T cell towards self-peptides.
^Brown MH, Lacey E (November 2010). "A ligand for CD5 is CD5". Journal of Immunology. 185 (10): 6068–6074. doi:10.4049/jimmunol.0903823. eISSN1550-6606. LCCN52052893. OCLC1778718. PMC2996635. PMID20952682.6068-6074&rft.date=2010-11&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996635#id-name=PMC&rft.eissn=1550-6606&rft_id=info:doi/10.4049/jimmunol.0903823&rft_id=info:oclcnum/1778718&rft_id=info:pmid/20952682&rft_id=info:lccn/52052893&rft.aulast=Brown&rft.aufirst=MH&rft.au=Lacey, E&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2996635&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
^Leong AS, Cooper K, Leong FJ (1 December 2002). "Section 1 - Antibodies (CD 5)". Manual of Diagnostic Antibodies for Immunohistology (Second ed.). Greenwich Medical Media. pp. 67–69. ISBN978-1841101002. OCLC51439459. OL8917797M. Retrieved 22 December 2022 – via Internet Archive.67-69&rft.edition=Second&rft.pub=Greenwich Medical Media&rft.date=2002-12-01&rft_id=info:oclcnum/51439459&rft_id=https://openlibrary.org/books/OL8917797M#id-name=OL&rft.isbn=978-1841101002&rft.aulast=Leong&rft.aufirst=AS&rft.au=Cooper, K&rft.au=Leong, FJ&rft_id=https://archive.org/details/manualofdiagnost0000leon/page/67&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Berland R, Wortis HH (2002). "Origins and functions of B-1 cells with notes on the role of CD5". Annual Review of Immunology. 20: 253–300. doi:10.1146/annurev.immunol.20.100301.064833. PMID11861604.253-300&rft.date=2002&rft_id=info:doi/10.1146/annurev.immunol.20.100301.064833&rft_id=info:pmid/11861604&rft.aulast=Berland&rft.aufirst=R&rft.au=Wortis, HH&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Osman N, Ley SC, Crumpton MJ (November 1992). "Evidence for an association between the T cell receptor/CD3 antigen complex and the CD5 antigen in human T lymphocytes". European Journal of Immunology. 22 (11): 2995–3000. doi:10.1002/eji.1830221135. PMID1385158. S2CID34625072.2995-3000&rft.date=1992-11&rft_id=https://api.semanticscholar.org/CorpusID:34625072#id-name=S2CID&rft_id=info:pmid/1385158&rft_id=info:doi/10.1002/eji.1830221135&rft.aulast=Osman&rft.aufirst=N&rft.au=Ley, SC&rft.au=Crumpton, MJ&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Van de Velde H, von Hoegen I, Luo W, Parnes JR, Thielemans K (June 1991). "The B-cell surface protein CD72/Lyb-2 is the ligand for CD5". Nature. 351 (6328): 662–665. Bibcode:1991Natur.351..662D. doi:10.1038/351662a0. PMID1711157. S2CID4342866.662-665&rft.date=1991-06&rft_id=info:doi/10.1038/351662a0&rft_id=https://api.semanticscholar.org/CorpusID:4342866#id-name=S2CID&rft_id=info:pmid/1711157&rft_id=info:bibcode/1991Natur.351..662D&rft.aulast=Van de Velde&rft.aufirst=H&rft.au=von Hoegen, I&rft.au=Luo, W&rft.au=Parnes, JR&rft.au=Thielemans, K&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Jones NH, Clabby ML, Dialynas DP, Huang HJ, Herzenberg LA, Strominger JL (1986). "Isolation of complementary DNA clones encoding the human lymphocyte glycoprotein T1/Leu-1". Nature. 323 (6086): 346–349. Bibcode:1986Natur.323..346J. doi:10.1038/323346a0. PMID3093892. S2CID4361866.346-349&rft.date=1986&rft_id=info:doi/10.1038/323346a0&rft_id=https://api.semanticscholar.org/CorpusID:4361866#id-name=S2CID&rft_id=info:pmid/3093892&rft_id=info:bibcode/1986Natur.323..346J&rft.aulast=Jones&rft.aufirst=NH&rft.au=Clabby, ML&rft.au=Dialynas, DP&rft.au=Huang, HJ&rft.au=Herzenberg, LA&rft.au=Strominger, JL&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Lankester AC, van Schijndel GM, Cordell JL, van Noesel CJ, van Lier RA (April 1994). "CD5 is associated with the human B cell antigen receptor complex". European Journal of Immunology. 24 (4): 812–816. doi:10.1002/eji.1830240406. PMID7512031. S2CID25093082.812-816&rft.date=1994-04&rft_id=https://api.semanticscholar.org/CorpusID:25093082#id-name=S2CID&rft_id=info:pmid/7512031&rft_id=info:doi/10.1002/eji.1830240406&rft.aulast=Lankester&rft.aufirst=AC&rft.au=van Schijndel, GM&rft.au=Cordell, JL&rft.au=van Noesel, CJ&rft.au=van Lier, RA&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Raab M, Yamamoto M, Rudd CE (May 1994). "The T-cell antigen CD5 acts as a receptor and substrate for the protein-tyrosine kinase p56lck". Molecular and Cellular Biology. 14 (5): 2862–2870. doi:10.1128/mcb.14.5.2862. PMC358654. PMID7513045.2862-2870&rft.date=1994-05&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC358654#id-name=PMC&rft_id=info:pmid/7513045&rft_id=info:doi/10.1128/mcb.14.5.2862&rft.aulast=Raab&rft.aufirst=M&rft.au=Yamamoto, M&rft.au=Rudd, CE&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC358654&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Dianzani U, Bragardo M, Buonfiglio D, Redoglia V, Funaro A, Portoles P, et al. (May 1995). "Modulation of CD4 lateral interaction with lymphocyte surface molecules induced by HIV-1 gp120". European Journal of Immunology. 25 (5): 1306–1311. doi:10.1002/eji.1830250526. PMID7539755. S2CID37717142.1306-1311&rft.date=1995-05&rft_id=https://api.semanticscholar.org/CorpusID:37717142#id-name=S2CID&rft_id=info:pmid/7539755&rft_id=info:doi/10.1002/eji.1830250526&rft.aulast=Dianzani&rft.aufirst=U&rft.au=Bragardo, M&rft.au=Buonfiglio, D&rft.au=Redoglia, V&rft.au=Funaro, A&rft.au=Portoles, P&rft.au=Rojo, J&rft.au=Malavasi, F&rft.au=Pileri, A&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Van de Velde H, Thielemans K (August 1996). "Native soluble CD5 delivers a costimulatory signal to resting human B lymphocytes". Cellular Immunology. 172 (1): 84–91. doi:10.1006/cimm.1996.0218. PMID8806810.84-91&rft.date=1996-08&rft_id=info:doi/10.1006/cimm.1996.0218&rft_id=info:pmid/8806810&rft.aulast=Van de Velde&rft.aufirst=H&rft.au=Thielemans, K&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Dennehy KM, Broszeit R, Garnett D, Durrheim GA, Spruyt LL, Beyers AD (March 1997). "Thymocyte activation induces the association of phosphatidylinositol 3-kinase and pp120 with CD5". European Journal of Immunology. 27 (3): 679–686. doi:10.1002/eji.1830270316. PMID9079809. S2CID41540340.679-686&rft.date=1997-03&rft_id=https://api.semanticscholar.org/CorpusID:41540340#id-name=S2CID&rft_id=info:pmid/9079809&rft_id=info:doi/10.1002/eji.1830270316&rft.aulast=Dennehy&rft.aufirst=KM&rft.au=Broszeit, R&rft.au=Garnett, D&rft.au=Durrheim, GA&rft.au=Spruyt, LL&rft.au=Beyers, AD&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Gary-Gouy H, Lang V, Sarun S, Boumsell L, Bismuth G (October 1997). "In vivo association of CD5 with tyrosine-phosphorylated ZAP-70 and p21 phospho-zeta molecules in human CD3 thymocytes". Journal of Immunology. 159 (8): 3739–3747. doi:10.4049/jimmunol.159.8.3739. PMID9378960. S2CID42470132.3739-3747&rft.date=1997-10&rft_id=https://api.semanticscholar.org/CorpusID:42470132#id-name=S2CID&rft_id=info:pmid/9378960&rft_id=info:doi/10.4049/jimmunol.159.8.3739&rft.aulast=Gary-Gouy&rft.aufirst=H&rft.au=Lang, V&rft.au=Sarun, S&rft.au=Boumsell, L&rft.au=Bismuth, G&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Vilà JM, Calvo J, Places L, Padilla O, Arman M, Gimferrer I, et al. (January 2001). "Role of two conserved cytoplasmic threonine residues (T410 and T412) in CD5 signaling". Journal of Immunology. 166 (1): 396–402. doi:10.4049/jimmunol.166.1.396. PMID11123317.396-402&rft.date=2001-01&rft_id=info:doi/10.4049/jimmunol.166.1.396&rft_id=info:pmid/11123317&rft.aulast=Vilà&rft.aufirst=JM&rft.au=Calvo, J&rft.au=Places, L&rft.au=Padilla, O&rft.au=Arman, M&rft.au=Gimferrer, I&rft.au=Aussel, C&rft.au=Vives, J&rft.au=Lozano, F&rft_id=https://doi.org/10.4049%2Fjimmunol.166.1.396&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Vilà JM, Gimferrer I, Padilla O, Arman M, Places L, Simarro M, et al. (April 2001). "Residues Y429 and Y463 of the human CD5 are targeted by protein tyrosine kinases". European Journal of Immunology. 31 (4): 1191–1198. doi:10.1002/1521-4141(200104)31:4<1191::AID-IMMU1191>3.0.CO;2-H. PMID11298344.1191-1198&rft.date=2001-04&rft_id=info:doi/10.1002/1521-4141(200104)31:4<1191::AID-IMMU1191>3.0.CO;2-H&rft_id=info:pmid/11298344&rft.aulast=Vilà&rft.aufirst=JM&rft.au=Gimferrer, I&rft.au=Padilla, O&rft.au=Arman, M&rft.au=Places, L&rft.au=Simarro, M&rft.au=Vives, J&rft.au=Lozano, F&rft_id=https://doi.org/10.1002%2F1521-4141%28200104%2931%3A4%3C1191%3A%3AAID-IMMU1191%3E3.0.CO%3B2-H&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Kirchgessner H, Dietrich J, Scherer J, Isomäki P, Korinek V, Hilgert I, et al. (June 2001). "The transmembrane adaptor protein TRIM regulates T cell receptor (TCR) expression and TCR-mediated signaling via an association with the TCR zeta chain". The Journal of Experimental Medicine. 193 (11): 1269–1284. doi:10.1084/jem.193.11.1269. PMC2193385. PMID11390434.1269-1284&rft.date=2001-06&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193385#id-name=PMC&rft_id=info:pmid/11390434&rft_id=info:doi/10.1084/jem.193.11.1269&rft.aulast=Kirchgessner&rft.aufirst=H&rft.au=Dietrich, J&rft.au=Scherer, J&rft.au=Isomäki, P&rft.au=Korinek, V&rft.au=Hilgert, I&rft.au=Bruyns, E&rft.au=Leo, A&rft.au=Cope, AP&rft.au=Schraven, B&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2193385&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">
Mier-Aguilar CA, Vega-Baray B, Burgueño-Bucio E, Lozano F, García-Zepeda EA, Raman C, et al. (October 2015). "Functional requirement of tyrosine residue 429 within CD5 cytoplasmic domain for regulation of T cell activation and survival". Biochemical and Biophysical Research Communications. 466 (3): 381–387. doi:10.1016/j.bbrc.2015.09.033. PMID26363459.381-387&rft.date=2015-10&rft_id=info:doi/10.1016/j.bbrc.2015.09.033&rft_id=info:pmid/26363459&rft.aulast=Mier-Aguilar&rft.aufirst=CA&rft.au=Vega-Baray, B&rft.au=Burgueño-Bucio, E&rft.au=Lozano, F&rft.au=García-Zepeda, EA&rft.au=Raman, C&rft.au=Soldevila, G&rfr_id=info:sid/en.wikipedia.org:CD5 (protein)" class="Z3988">