Transport and golgi organization 2 homolog (TANGO2) also known as chromosome 22 open reading frame 25 (C22orf25) is a protein that in humans is encoded by the TANGO2 gene.
The function of C22orf25 is not currently known. It is characterized by the NRDE superfamily domain (DUF883), which is strictly known for the conserved amino acid sequence of (N)-Asparagine (R)-Arginine (D)-Aspartic Acid (E)-Glutamic Acid. This domain is found among distantly related species from the six kingdoms:[4] Eubacteria, Archaebacteria, Protista, Fungi, Plantae, and Animalia and is known to be involved in Golgi organization and protein secretion.[5] It is likely that it localizes in the cytoplasm but is anchored in the cell membrane by the second amino acid.[6][7] C22orf25 is also xenologous to T10 like proteins in the Fowlpox Virus and Canarypox Virus. The gene coding for C22orf25 is located on chromosome 22 and the location q11.21, so it is often associated with 22q11.2 deletion syndrome.[8]
Protein
editGene Size | Protein Size | # of exons | Promoter Sequence | Signal Peptide | Molecular Weight | Domain Length |
---|---|---|---|---|---|---|
2271 bp | 276 aa | 9[9] | 687 bp | No[10] | 30.9 kDa[11] | 270 aa |
Gene neighborhood
editThe C22orf25 gene is located on the long arm (q) of chromosome 22 in region 1, band 1, and sub-band 2 (22q11.21) starting at 20,008,631 base pairs and ending at 20,053,447 base pairs.[8] There is a 1.5-3.0 Mb deletion containing around 30-40 genes, spanning this region that causes the most survivable genetic deletion disorder known as 22q11.2 deletion syndrome, which is most commonly known as DiGeorge syndrome or Velocaridofacial syndrome.[12][13] 22q11.2 deletion syndrome has a vast array of phenotypes and is not attributed to the loss of a single gene. The vast phenotypes arise from deletions of not only DiGeorge Syndrome Critical Region (DGCR) genes and disease genes but other unidentified genes as well.[14]
C22orf25 is in close proximity to DGCR8 as well as other genes known to play a part in DiGeorge Syndrome such as armadillo repeat gene deleted in Velocardiofacial syndrome (ARVCF), Cathechol-O-methyltransferase (COMT) and T-box 1 (TBX1).[15][16]
Predicted mRNA features
editPromoter
editThe promoter for the C22orf25 gene spans 687 base pairs from 20,008,092 to 20,008,878 with a predicted transcriptional start site that is 104 base pairs and spans from 20,008,591 to 20,008,694.[17] The promoter region and beginning of the C22orf25 gene (20,008,263 to 20,009,250) is not conserved past primates. This region was used to determine transcription factor interactions.
Transcription factors
editSome of the main transcription factors that bind to the promoter are listed below.[18]
Reference | Detailed Family Information | Start (amino acid) | End (amino acid) | Strand |
---|---|---|---|---|
XBBF | X-box binding factors | 227 | 245 | - |
GCMF | Chorion-specific transcription factors (with a GCM DNA binding domain) | 151 | 165 | - |
YBXF | Y-box binding transcription factors | 158 | 170 | - |
RUSH | SWI/SNF related nucleophosphoproteins (with a RING finger binding motif) | 222 | 232 | - |
NEUR | NeuroD, Beta2, HLH domain | 214 | 226 | - |
PCBE | PREB core-binding element | 148 | 162 | - |
NR2F | Nuclear receptor subfamily 2 factors | 169 | 193 | - |
AP1R | MAF and AP1 related factors | 201 | 221 | - |
ZF02 | C2H2 zinc finger transcription factors 2 | 108 | 130 | - |
TALE | TALE homeodomain class recognizing TG motifs | 216 | 232 | - |
WHNF | Winged helix transcription factors | 271 | 281 | - |
FKHD | Forkhead domain factors | 119 | 135 | |
MYOD | Myoblast determining factors | 218 | 234 | |
AP1F | AP1, activating protein 1 | 118 | 130 | |
BCL6 | POZ domain zinc finger expressed in B cells | 190 | 206 | |
CARE | Calcium response elements | 196 | 206 | |
EVI1 | EVI1 nuclear transcription factor | 90 | 106 | |
ETSF | ETS transcription factor | 162 | 182 | |
TEAF | TEA/ATTS DNA binding domain factors | 176 | 188 |
Expression analysis
editExpression data from Expressed Sequence Tag mapping, microarray and in situ hybridization show high expression for Homo sapiens in the blood, bone marrow and nerves.[19][20][21] Expression is not restricted to these areas and low expression is seen elsewhere in the body. In Caenorhabditis elegans, the snt-1 gene (C22orf25 homologue) was expressed in the nerve ring, ventral and dorsal cord processes, sites of neuromuscular junctions, and in neurons.[22]
Evolutionary history
editThe NRDE (DUF883) domain, is a domain of unknown function spanning majority of the C22orf25 gene and is found among distantly related species, including viruses.
Genus and Species | Common Name | Accession Number | Seq. Length |
Seq. Identity |
Seq. Similarity |
Kingdom | Time of Divergence |
---|---|---|---|---|---|---|---|
Homo sapiens | humans | NP_690870.3 | 276aa | - | - | Animalia | - |
Pan troglodytes | common chimpanzee | BAK62258.1 | 276aa | 99% | 100% | Animalia | 6.4 mya |
Ailuropoda melanoleuca | giant panda | XP_002920626 | 276aa | 91% | 94% | Animalia | 94.4 mya |
Mus musculus | house mouse | NP_613049.2 | 276aa | 88% | 95% | Animalia | 92.4 mya |
Meleagris gallopavo | turkey | XP_003210928 | 276aa | 74% | 88% | Animalia | 301.7 mya |
Gallus gallus | Red Junglefowl | NP_001007837 | 276aa | 73% | 88% | Animalia | 301.7 mya |
Xenopus laevis | African clawed frog | NP_001083694 | 275aa | 69% | 86% | Animalia | 371.2 mya |
Xenopus (Silurana) tropicalis | Western clawed frog | NP_001004885.1 | 276aa | 68% | 85% | Animalia | 371.2 mya |
Salmo salar | Atlantic salmon | NP_001167100 | 274aa | 66% | 79% | Animalia | 400.1 mya |
Danio rerio | zebrafish | NP_001003781 | 273aa | 64% | 78% | Animalia | 400.1 mya |
Canarypox | virus | NP_955117 | 275aa | 50% | 69% | - | - |
Fowlpox | virus | NP_039033 | 273aa | 44% | 63% | - | - |
Cupriavidus | proteobacteria | YP_002005507.1 | 275aa | 38% | 52% | Eubacteria | 2313.2 mya |
Burkholderia | proteobacteria | YP_004977059 | 273aa | 37% | 53% | Eubacteria | 2313.2 mya |
Physcomitrella patens | moss | XP_001781807 | 275aa | 37% | 54% | Plantae | 1369 mya |
Zea mays | maize/corn | ACG35095 | 266aa | 33% | 53% | Plantae | 1369 mya |
Trichophyton rubrum | fungus | XP_003236126 | 306aa | 32% | 47% | Fungi | 1215.8 mya |
Sporisorium reilianum | Plant pathogen | CBQ69093 | 321aa | 32% | 43% | Fungi | 1215.8 mya |
Perkinsus marinus | pathogen of oysters | XP_002787624 | 219aa | 31% | 48% | Protista | 1381.2 mya |
Tetrahymena thermophilia | Ciliate protozoa | XP_001010229 | 277aa | 26% | 44% | Protista | 1381.2 mya |
Natrialba magadii | extremophile | YP_003481665 | 300aa | 25% | 39% | Archaebacteria | 3556.3 mya |
Halopiger xanaduensis | halophilic archaeon | YP_004597780.1 | 264aa | 24% | 39% | Archaebacteria | 3556.3 mya |
Predicted protein features
editPost translational modifications
editPost translational modifications of the C22orf25 gene that are evolutionarily conserved in the Animalia and Plantae kingdoms as well as the Canarypox Virus include glycosylation (C-mannosylation),[23] glycation,[24] phosphorylation (kinase specific),[25] and palmitoylation.[26]
Predicted topology
editC22orf25 localizes to the cytoplasm and is anchored to the cell membrane by the second amino acid. As mentioned previously, the second amino acid is modified by palmitoylation. Palmitoylation is known to contribute to membrane association[27] because it contributes to enhanced hydrophobicity.[6] Palmitoylation is known to play a role in the modulation of proteins' trafficking,[28] stability[29] and sorting.[30] Palmitoylation is also involved in cellular signaling[31] and neuronal transmission.[32]
Protein Interactions
editC22orf25 has been shown to interact with NFKB1,[33] RELA,[33] RELB,[33] BTRC,[33] RPS27A,[33] BCL3,[33] MAP3K8,[33] NFKBIA,[33] SIN3A,[33] SUMO1,[33] Tat.[34]
Clinical significance
editMutations in the TANGO2 gene may cause defects in mitochondrial β-oxidation[35] and increased endoplasmic reticulum stress and a reduction in Golgi volume density.[36] These mutations results in early onset hypoglycemia, hyperammonemia, rhabdomyolysis, cardiac arrhythmias, and encephalopathy that later develops into cognitive impairment.[35][36] Abnormal autophagy and mitophagy have been associated with TANGO2-related disease and may explain the varying presentation in muscle biopsies, including secondary abnormal fatty acid and mitochondrial metabolism.[37]
References
edit- ^ a b c GRCh38: Ensembl release 89: ENSG00000183597 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "BLAST (NCBI)".
- ^ "Conserved Domains (NCBI)".
- ^ a b "CSS-Palm". Archived from the original on 2009-02-15. Retrieved 2012-05-08.
- ^ "PSORTII".
- ^ a b "Gene (NCBI)".
- ^ "ElDorado (Genomatix)". Archived from the original on 2021-12-02. Retrieved 2012-04-27.
- ^ "SignalP (ExPASy)". Archived from the original on 2012-04-24. Retrieved 2012-04-28.
- ^ "Statistical Analysis of Protein Sequence (Biology Workbench)".[permanent dead link ]
- ^ Meechan DW, Maynard TM, Tucker ES, LaMantia AS (2011). "Three phases of DiGeorge/22q11 deletion syndrome pathogenesis during brain development: Patterning, proliferation, and mitochondrial functions of 22q11 genes". International Journal of Developmental Neuroscience. 29 (3): 283–294. doi:10.1016/j.ijdevneu.2010.08.005. PMC 3770287. PMID 20833244.283-294&rft.date=2011&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770287#id-name=PMC&rft_id=info:pmid/20833244&rft_id=info:doi/10.1016/j.ijdevneu.2010.08.005&rft.aulast=Meechan&rft.aufirst=DW&rft.au=Maynard, TM&rft.au=Tucker, ES&rft.au=LaMantia, AS&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770287&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Kniffin C. "DiGeorge Syndrome; DGS. Retrieved April 2012, from Online Mendelian Inheritance in Man".
- ^ Scambler PJ (2000). "The 22q11 deletion syndromes". Hum. Mol. Genet. 9 (16): 2421–6. doi:10.1093/hmg/9.16.2421. PMID 11005797.2421-6&rft.date=2000&rft_id=info:doi/10.1093/hmg/9.16.2421&rft_id=info:pmid/11005797&rft.aulast=Scambler&rft.aufirst=PJ&rft_id=https://doi.org/10.1093%2Fhmg%2F9.16.2421&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, McDonald-Mcginn DM, Hain HS, Emanuel BS, Zackai EH (1993). "22q11.2 Deletion Syndrome". University of Washington, Seattle. PMID 20301696.
- ^ "BLAT UCSC Genome Browser".
- ^ "El Durado (Genomatix)".
- ^ "El Durado-Genomatix".
- ^ "Unigene NCBI". Archived from the original on 2013-07-12. Retrieved 2012-04-26.
- ^ "GEO Profiles NCBI".
- ^ "Bio GPS".
- ^ "WormBase".
- ^ "NetCGly (ExPASy)". Archived from the original on 2012-04-24. Retrieved 2012-04-28.
- ^ "NetGlycate (ExPASy)". Archived from the original on 2012-04-24. Retrieved 2012-04-28.
- ^ "Phos (ExPASy)". Archived from the original on 2012-04-24. Retrieved 2012-04-28.
- ^ "CSS Palm (ExPASy)". Archived from the original on 2012-04-24. Retrieved 2012-04-28.
- ^ Resh MD (2006). "Palmitoylation of Ligands, Receptors, and Intracellular Signaling Molecules". Science's STKE. 2006 (359): 14. doi:10.1126/stke.3592006re14. PMID 17077383. S2CID 25729573.
- ^ Draper JM, Xia Z, Smith CD (Aug 2007). "Cellular palmitoylation and trafficking of lipated peptides". Journal of Lipid Research. 48 (8): 1873–1884. doi:10.1194/jlr.m700179-jlr200. PMC 2895159. PMID 17525474.1873-1884&rft.date=2007-08&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895159#id-name=PMC&rft_id=info:pmid/17525474&rft_id=info:doi/10.1194/jlr.m700179-jlr200&rft.aulast=Draper&rft.aufirst=JM&rft.au=Xia, Z&rft.au=Smith, CD&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2895159&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Linder ME, Deschenes RJ (Jan 2007). "Palmitoylation: policing protein stability and traffic". Nature Reviews Molecular Cell Biology. 8 (1): 74–84. doi:10.1038/nrm2084. PMID 17183362. S2CID 26339042.74-84&rft.date=2007-01&rft_id=https://api.semanticscholar.org/CorpusID:26339042#id-name=S2CID&rft_id=info:pmid/17183362&rft_id=info:doi/10.1038/nrm2084&rft.aulast=Linder&rft.aufirst=ME&rft.au=Deschenes, RJ&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Greaves J, Chamberlain LH (Jan 2007). "Palmitoylation-dependent protein sorting". The Journal of Cell Biology. 176 (3): 249–254. doi:10.1083/jcb.200610151. PMC 2063950. PMID 17242068.249-254&rft.date=2007-01&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063950#id-name=PMC&rft_id=info:pmid/17242068&rft_id=info:doi/10.1083/jcb.200610151&rft.aulast=Greaves&rft.aufirst=J&rft.au=Chamberlain, LH&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2063950&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Casey PJ (1995). "Protein lipidation in cell signaling". Science. 268 (5208): 221–5. Bibcode:1995Sci...268..221C. doi:10.1126/science.7716512. PMID 7716512.221-5&rft.date=1995&rft_id=info:pmid/7716512&rft_id=info:doi/10.1126/science.7716512&rft_id=info:bibcode/1995Sci...268..221C&rft.aulast=Casey&rft.aufirst=PJ&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ Roth AF, Wan J, Bailey AO, Sun B, Kuchar JA, Green WN, Phinney BS, Yates JR, Davis NG (June 2006). "Global analysis of protein palmitoylation in yeast". Cell. 125 (5): 1003–1013. doi:10.1016/j.cell.2006.03.042. PMC 2246083. PMID 16751107.1003-1013&rft.date=2006-06&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246083#id-name=PMC&rft_id=info:pmid/16751107&rft_id=info:doi/10.1016/j.cell.2006.03.042&rft.aulast=Roth&rft.aufirst=AF&rft.au=Wan, J&rft.au=Bailey, AO&rft.au=Sun, B&rft.au=Kuchar, JA&rft.au=Green, WN&rft.au=Phinney, BS&rft.au=Yates, JR&rft.au=Davis, NG&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2246083&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ a b c d e f g h i j "Molecular Interaction Database". Archived from the original on 2006-05-06.
- ^ "Viral Molecular Interaction Database". Archived from the original on 2015-02-15.
- ^ a b Kremer LS, Distelmaier F, Alhaddad B, Hempel M, Iuso A, Küpper C, et al. (2016). "Bi-allelic Truncating Mutations in TANGO2 Cause Infancy-Onset Recurrent Metabolic Crises with Encephalocardiomyopathy". American Journal of Human Genetics. 98 (2): 358–62. doi:10.1016/j.ajhg.2015.12.009. PMC 4746337. PMID 26805782.358-62&rft.date=2016&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746337#id-name=PMC&rft_id=info:pmid/26805782&rft_id=info:doi/10.1016/j.ajhg.2015.12.009&rft.aulast=Kremer&rft.aufirst=LS&rft.au=Distelmaier, F&rft.au=Alhaddad, B&rft.au=Hempel, M&rft.au=Iuso, A&rft.au=Küpper, C&rft.au=Mühlhausen, C&rft.au=Kovacs-Nagy, R&rft.au=Satanovskij, R&rft.au=Graf, E&rft.au=Berutti, R&rft.au=Eckstein, G&rft.au=Durbin, R&rft.au=Sauer, S&rft.au=Hoffmann, GF&rft.au=Strom, TM&rft.au=Santer, R&rft.au=Meitinger, T&rft.au=Klopstock, T&rft.au=Prokisch, H&rft.au=Haack, TB&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746337&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ a b Lalani SR, Liu P, Rosenfeld JA, Watkin LB, Chiang T, Leduc MS, et al. (2016). "Recurrent Muscle Weakness with Rhabdomyolysis, Metabolic Crises, and Cardiac Arrhythmia Due to Bi-allelic TANGO2 Mutations". American Journal of Human Genetics. 98 (2): 347–57. doi:10.1016/j.ajhg.2015.12.008. PMC 4746334. PMID 26805781.347-57&rft.date=2016&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746334#id-name=PMC&rft_id=info:pmid/26805781&rft_id=info:doi/10.1016/j.ajhg.2015.12.008&rft.aulast=Lalani&rft.aufirst=SR&rft.au=Liu, P&rft.au=Rosenfeld, JA&rft.au=Watkin, LB&rft.au=Chiang, T&rft.au=Leduc, MS&rft.au=Zhu, W&rft.au=Ding, Y&rft.au=Pan, S&rft.au=Vetrini, F&rft.au=Miyake, CY&rft.au=Shinawi, M&rft.au=Gambin, T&rft.au=Eldomery, MK&rft.au=Akdemir, ZH&rft.au=Emrick, L&rft.au=Wilnai, Y&rft.au=Schelley, S&rft.au=Koenig, MK&rft.au=Memon, N&rft.au=Farach, LS&rft.au=Coe, BP&rft.au=Azamian, M&rft.au=Hernandez, P&rft.au=Zapata, G&rft.au=Jhangiani, SN&rft.au=Muzny, DM&rft.au=Lotze, T&rft.au=Clark, G&rft.au=Wilfong, A&rft.au=Northrup, H&rft.au=Adesina, A&rft.au=Bacino, CA&rft.au=Scaglia, F&rft.au=Bonnen, PE&rft.au=Crosson, J&rft.au=Duis, J&rft.au=Maegawa, GH&rft.au=Coman, D&rft.au=Inwood, A&rft.au=McGill, J&rft.au=Boerwinkle, E&rft.au=Graham, B&rft.au=Beaudet, A&rft.au=Eng, CM&rft.au=Hanchard, NA&rft.au=Xia, F&rft.au=Orange, JS&rft.au=Gibbs, RA&rft.au=Lupski, JR&rft.au=Yang, Y&rft_id=https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4746334&rfr_id=info:sid/en.wikipedia.org:TANGO2" class="Z3988">
- ^ de Calbiac H, Montealegre S, Straube M, Renault S, Debruge H, Chentout L, Ciura S, Imbard A, Le Guillou E, Marian A, Goudin N, Caccavelli L, Fabrega S, Hubas A, van Endert P (February 2024). "TANGO2-related rhabdomyolysis symptoms are associated with abnormal autophagy functioning". Autophagy Reports. 3 (1). doi:10.1080/27694127.2024.2306766. ISSN 2769-4127.
External links
edit- [1] Archived 2017-11-07 at the Wayback Machine www.tango2.it - Disease website
- [2] www.tango2research.org - Research disease website -