BD 17°3248

(Redirected from BD 17 3248)

BD 17°3248 is an old Population II star located at a distance of roughly 968 light-years (297 parsecs) in the Galactic Halo. It belongs to the class of ultra-metal-poor stars,[5] especially the very rare subclass of neutron-capture (r-process) enhanced stars.

BD 17°3248
Observation data
Epoch J2000      Equinox J2000
Constellation Hercules
Right ascension 17h 28m 14.4690s[1]
Declination 17° 30′ 35.848″[1]
Apparent magnitude (V) 9.37[2]
Characteristics
Spectral type KII vw[3]
U−B color index 0.08[2]
B−V color index 0.66[2]
Astrometry
Radial velocity (Rv)–146.55[4] km/s
Proper motion (μ) RA: −47.611(13) mas/yr[1]
Dec.: −22.366(13) mas/yr[1]
Parallax (π)1.2357 ± 0.0129 mas[1]
Distance2,640 ± 30 ly
(809 ± 8 pc)
Absolute magnitude (MV) 2.16 0.74
−1.14
[5]
Details
Mass0.55–0.85[5] M
Radius12.64 0.39
−0.93
[6] R
Luminosity117±5[6] L
Surface gravity (log g)2.30[7] cgs
Temperature5,200±150[5] K
Metallicity [Fe/H]–2.02[7] dex
Age13.8±4[5] Gyr
Other designations
BD 17 3248, HIP 85487, PPM 133421[3]
Database references
SIMBADdata

Since about 2000, the star has been studied with 3 telescopes: the Hubble Space Telescope, the Keck I telescope and the Harlan J. Smith Telescope at the McDonald Observatory of the University of Texas. Elemental abundances in the range from germanium (Z=32) up to uranium (Z=92) have been determined. The Hubble Space Telescope was used to observe the ultraviolet part of the stellar spectra. This allowed the measurement of platinum, osmium and, for the first time outside of the Solar System, gold. From barium (Z=56) onward, all elements show a pattern of r-process contribution to the abundances of the elements in the Solar system.[5]

The University of Mainz and University of Basel groups of Karl-Ludwig Kratz and Friedrich-Karl Thielemann performed a comparison between the observed abundances for the stable element europium (Z=63) and the radioactive elements thorium (Z=90) and uranium (Z=92) to the calculated abundances of an r-process in a Type II supernova explosion. This allowed the age of this star to be estimated as about 13.8 billion years with an uncertainty of 4 billion years. A similar age was derived for another ultra-metal-poor star (CS31082-001) from thorium to uranium ratios. These stars were born several hundred million years after the Big Bang.[5]

References

edit
  1. ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  2. ^ a b c Carney, B. W. (May 1983), "A photometric search for halo binaries. I - New observational data", Astronomical Journal, 88: 610–641, Bibcode:1983AJ.....88..610C, doi:10.1086/113350610-641&rft.date=1983-05&rft_id=info:doi/10.1086/113350&rft_id=info:bibcode/1983AJ.....88..610C&rft.aulast=Carney&rft.aufirst=B. W.&rfr_id=info:sid/en.wikipedia.org:BD+17°3248" class="Z3988">
  3. ^ a b "BD 17 3248". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2012-03-10.
  4. ^ Bonifacio; et al. (July 2009), "First stars XII. Abundances in extremely metal-poor turnoff stars, and comparison with the giants", Astronomy and Astrophysics, 501 (2): 519–530, arXiv:0903.4174, Bibcode:2009A&A...501..519B, doi:10.1051/0004-6361/200810610, S2CID 119164253519-530&rft.date=2009-07&rft_id=info:arxiv/0903.4174&rft_id=https://api.semanticscholar.org/CorpusID:119164253#id-name=S2CID&rft_id=info:doi/10.1051/0004-6361/200810610&rft_id=info:bibcode/2009A&A...501..519B&rft.au=Bonifacio&rft.au=Spite, M.&rft.au=Cayrel, R.&rft.au=Hill, V.&rft.au=Spite, F.&rft.au=François, P.&rft.au=Plez, B.&rft.au=Ludwig, H.-G.&rft.au=Caffau, E.&rft.au=Molaro, P.&rft.au=Depagne, E.&rft.au=Andersen, J.&rft.au=Barbuy, B.&rft.au=Beers, T. C.&rft.au=Nordström, B.&rft.au=Primas, F.&rfr_id=info:sid/en.wikipedia.org:BD+17°3248" class="Z3988">
  5. ^ a b c d e f g Cowan, John J.; et al. (June 2002), "The Chemical Composition and Age of the Metal-poor Halo Star BD 17°3248", The Astrophysical Journal, 572 (2): 861–879, arXiv:astro-ph/0202429, Bibcode:2002ApJ...572..861C, doi:10.1086/340347, S2CID 119503888861-879&rft.date=2002-06&rft_id=info:arxiv/astro-ph/0202429&rft_id=https://api.semanticscholar.org/CorpusID:119503888#id-name=S2CID&rft_id=info:doi/10.1086/340347&rft_id=info:bibcode/2002ApJ...572..861C&rft.aulast=Cowan&rft.aufirst=John J.&rft.au=Sneden, Christopher&rft.au=Burles, Scott&rft.au=Ivans, Inese I.&rft.au=Beers, Timothy C.&rft.au=Truran, James W.&rft.au=Lawler, James E.&rft.au=Primas, Francesca&rft.au=Fuller, George M.&rft.au=Pfeiffer, Bernd&rft.au=Kratz, Karl-Ludwig&rfr_id=info:sid/en.wikipedia.org:BD+17°3248" class="Z3988">
  6. ^ a b Brown, A. G. A.; et al. (Gaia collaboration) (August 2018). "Gaia Data Release 2: Summary of the contents and survey properties". Astronomy & Astrophysics. 616. A1. arXiv:1804.09365. Bibcode:2018A&A...616A...1G. doi:10.1051/0004-6361/201833051. Gaia DR2 record for this source at VizieR.
  7. ^ a b Burris, Debra L.; et al. (November 2000), "Neutron-Capture Elements in the Early Galaxy: Insights from a Large Sample of Metal-poor Giants", The Astrophysical Journal, 544 (1): 302–319, arXiv:astro-ph/0005188, Bibcode:2000ApJ...544..302B, doi:10.1086/317172, S2CID 33015452302-319&rft.date=2000-11&rft_id=info:arxiv/astro-ph/0005188&rft_id=https://api.semanticscholar.org/CorpusID:33015452#id-name=S2CID&rft_id=info:doi/10.1086/317172&rft_id=info:bibcode/2000ApJ...544..302B&rft.aulast=Burris&rft.aufirst=Debra L.&rft.au=Pilachowski, Catherine A.&rft.au=Armandroff, Taft E.&rft.au=Sneden, Christopher&rft.au=Cowan, John J.&rft.au=Roe, Henry&rfr_id=info:sid/en.wikipedia.org:BD+17°3248" class="Z3988">
edit