In number theory, a natural number is called k-almost prime if it has k prime factors.[1][2][3] More formally, a number n is k-almost prime if and only if Ω(n) = k, where Ω(n) is the total number of primes in the prime factorization of n (can be also seen as the sum of all the primes' exponents):
A natural number is thus prime if and only if it is 1-almost prime, and semiprime if and only if it is 2-almost prime. The set of k-almost primes is usually denoted by Pk. The smallest k-almost prime is 2k. The first few k-almost primes are:
k | k-almost primes | OEIS sequence |
---|---|---|
1 | 2, 3, 5, 7, 11, 13, 17, 19, … | A000040 |
2 | 4, 6, 9, 10, 14, 15, 21, 22, … | A001358 |
3 | 8, 12, 18, 20, 27, 28, 30, … | A014612 |
4 | 16, 24, 36, 40, 54, 56, 60, … | A014613 |
5 | 32, 48, 72, 80, 108, 112, … | A014614 |
6 | 64, 96, 144, 160, 216, 224, … | A046306 |
7 | 128, 192, 288, 320, 432, 448, … | A046308 |
8 | 256, 384, 576, 640, 864, 896, … | A046310 |
9 | 512, 768, 1152, 1280, 1728, … | A046312 |
10 | 1024, 1536, 2304, 2560, … | A046314 |
11 | 2048, 3072, 4608, 5120, … | A069272 |
12 | 4096, 6144, 9216, 10240, … | A069273 |
13 | 8192, 12288, 18432, 20480, … | A069274 |
14 | 16384, 24576, 36864, 40960, … | A069275 |
15 | 32768, 49152, 73728, 81920, … | A069276 |
16 | 65536, 98304, 147456, … | A069277 |
17 | 131072, 196608, 294912, … | A069278 |
18 | 262144, 393216, 589824, … | A069279 |
19 | 524288, 786432, 1179648, … | A069280 |
20 | 1048576, 1572864, 2359296, … | A069281 |
The number πk(n) of positive integers less than or equal to n with exactly k prime divisors (not necessarily distinct) is asymptotic to:[4][relevant?]
a result of Landau.[5] See also the Hardy–Ramanujan theorem.[relevant?]
Properties
edit- The product of a k1-almost prime and a k2-almost prime is a (k1 k2)-almost prime.
- A k-almost prime cannot have a n-almost prime as a factor for all n > k.
References
edit- ^ Sándor, József; Dragoslav, Mitrinović S.; Crstici, Borislav (2006). Handbook of Number Theory I. Springer. p. 316. doi:10.1007/1-4020-3658-2. ISBN 978-1-4020-4215-7.
- ^ Rényi, Alfréd A. (1948). "On the representation of an even number as the sum of a single prime and single almost-prime number". Izvestiya Rossiiskoi Akademii Nauk: Seriya Matematicheskaya (in Russian). 12 (1): 57–78.
- ^ Heath-Brown, D. R. (May 1978). "Almost-primes in arithmetic progressions and short intervals". Mathematical Proceedings of the Cambridge Philosophical Society. 83 (3): 357–375. Bibcode:1978MPCPS..83..357H. doi:10.1017/S0305004100054657. S2CID 122691474.
- ^ Tenenbaum, Gerald (1995). Introduction to Analytic and Probabilistic Number Theory. Cambridge University Press. ISBN 978-0-521-41261-2.
- ^ Landau, Edmund (1953) [first published 1909]. "§ 56, Über Summen der Gestalt ". Handbuch der Lehre von der Verteilung der Primzahlen. Vol. 1. Chelsea Publishing Company. p. 211.