This article needs additional citations for verification. (June 2016) |
8000 (eight thousand) is the natural number following 7999 and preceding 8001.
| ||||
---|---|---|---|---|
Cardinal | eight thousand | |||
Ordinal | 8000th (eight thousandth) | |||
Factorization | 26 × 53 | |||
Greek numeral | ,Η´ | |||
Roman numeral | VMMM, or VIII | |||
Unicode symbol(s) | VMMM, vmmm, VIII, viii | |||
Binary | 11111010000002 | |||
Ternary | 1012220223 | |||
Senary | 1010126 | |||
Octal | 175008 | |||
Duodecimal | 476812 | |||
Hexadecimal | 1F4016 | |||
Armenian | Փ |
8000 is the cube of 20, as well as the sum of four consecutive integers cubed, 113 123 133 143.
The fourteen tallest mountains on Earth, which exceed 8000 meters in height, are sometimes referred to as eight-thousanders.[1]
Selected numbers in the range 8001–8999
edit8001 to 8099
edit- 8001 – triangular number
- 8002 – Mertens function zero
- 8011 – Mertens function zero, super-prime
- 8012 – Mertens function zero
- 8017 – Mertens function zero
- 8021 – Mertens function zero
- 8039 – safe prime
- 8059 – super-prime
- 8069 – Sophie Germain prime
- 8093 – Sophie Germain prime
8100 to 8199
edit- 8100 = 902
- 8101 – super-prime
- 8111 – Sophie Germain prime
- 8117 – super-prime, balanced prime
- 8119 – octahedral number;[2] 8119/5741 ≈ √2
- 8125 – pentagonal pyramidal number[3]
- 8128 – perfect number, harmonic divisor number, 127th triangular number, 64th hexagonal number, eighth 292-gonal number, fourth 1356-gonal number
- 8147 – safe prime
- 8189 – highly cototient number
- 8190 – harmonic divisor number
- 8191 – Mersenne prime
- 8192 = 213
8200 to 8299
edit- 8208 – base 10 narcissistic number as 84 24 04 84 = 8208[4]
- 8219 – twin prime with 8221
- 8221 – super-prime, twin prime with 8219
- 8233 – super-prime, centered heptagonal number
- 8243 – Sophie Germain prime
- 8256 – triangular number
- 8257 – sum of the squares of the first fourteen primes
- 8269 – cuban prime of the form x = y 1[5]
- 8273 – Sophie Germain prime
- 8281 = 912, sum of the cubes of the first thirteen integers, nonagonal number, centered octagonal number
- 8287 – super-prime
8300 to 8399
edit- 8321 – super-Poulet number[6]
- 8326 – decagonal number[7]
- 8345 - smallest pandigital number in base 6[8]
- 8361 – Leyland number[9]
- 8363 – prime number, number of prime numbers having five digits[10]
- 8377 – super-prime
- 8385 – triangular number
- 8389 – super-prime, twin prime
8400 to 8499
edit- 8423 – safe prime
- 8436 – tetrahedral number[11]
- 8437 - star number
- 8464 = 922
8500 to 8599
edit- 8513 – Sophie Germain prime, super-prime
- 8515 – triangular number
- 8521 – sexy prime with 8527
- 8527 – super-prime, sexy prime with 8521
- 8543 – safe prime
- 8555 – square pyramidal number[12]
- 8558 – Large Schröder number
- 8576 – centered heptagonal number
- 8581 – super-prime
8600 to 8699
edit- 8625 – nonagonal number
- 8646 – triangular number
- 8649 = 932, centered octagonal number
- 8658 - sum of the first four perfect numbers (6, 28, 496, 8128) and the product of the culturally significant 666 and 13
- 8663 – Sophie Germain prime
- 8693 – Sophie Germain prime
- 8695 – decagonal number
- 8699 – safe prime
8700 to 8799
edit- 8712 – smallest number that is divisible by its reverse: 8712 = 4 × 2178 (excluding palindromes and numbers with trailing zeros)
- 8713 – balanced prime
- 8719 – super-prime
- 8741 – Sophie Germain prime
- 8747 – safe prime, balanced prime, super-prime
- 8748 – 3-smooth number (22×37)
- 8751 – perfect totient number[13]
- 8760 - the number of hours in a non-leap year; 365 × 24
- 8761 – super-prime
- 8778 – triangular number
- 8783 – safe prime
- 8784 - the number of hours in a leap year; 366 × 24
8800 to 8899
edit- 8801 – magic constant of n × n normal magic square and n-Queens Problem for n = 26.
- 8807 – super-prime, sum of eleven consecutive primes (761 769 773 787 797 809 811 821 823 827 829)
- 8819 – safe prime
- 8833 = 882 332
- 8836 = 942
- 8839 – sum of twenty-three consecutive primes (313 317 331 337 347 349 353 359 367 373 379 383 389 397 401 409 419 421 431 433 439 443 449)
- 8849 – super-prime
- 8855 – member of a Ruth-Aaron pair (first definition) with 8856
- 8856 – member of a Ruth-Aaron pair (first definition) with 8855
- 8888 - repdigit
- 8893 - star prime
8900 to 8999
edit- 8911 – Carmichael number,[14] triangular number
- 8923 – super-prime
- 8926 – centered heptagonal number
- 8933 – the 1,111th prime number
- 8944 – sum of the cubes of the first seven primes
- 8951 – Sophie Germain prime
- 8963 – safe prime
- 8964 – number referring to the 1989 Tiananmen Square Protests
- 8969 – Sophie Germain prime
- 8976 – enneagonal number
- 8999 – super-prime
Prime numbers
editThere are 110 prime numbers between 8000 and 9500:[15][16]
- 8009, 8011, 8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117, 8123, 8147, 8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243, 8263, 8269, 8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377, 8387, 8389, 8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527, 8537, 8539, 8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647, 8663, 8669, 8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747, 8753, 8761, 8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863, 8867, 8887, 8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999
References
edit- ^ Voiland, Adam (16 December 2013). "The Eight-Thousanders". The Earth Observatory. NASA. Retrieved 12 September 2016.
- ^ "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2016-06-14.
- ^ Sloane, N. J. A. (ed.). "Sequence A005188 (Armstrong (or Plus Perfect, or narcissistic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002407 (Cuban primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A050217 (Super-Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001107 (10-gonal (or decagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A049363 (a(1) = 1; for n > 1, smallest digitally balanced number in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006879 (Number of primes with n digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000292 (Tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A082897 (Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002997 (Carmichael numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n 1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.