2017 in paleomammalogy

This paleomammalogy list records new fossil mammal taxa that were described during the year 2017, as well as notes other significant paleomammalogy discoveries and events which occurred during that year.

List of years in paleomammalogy
In paleontology
2014
2015
2016
2017
2018
2019
2020
In paleobotany
2014
2015
2016
2017
2018
2019
2020
In arthropod paleontology
2014
2015
2016
2017
2018
2019
2020
In paleoentomology
2014
2015
2016
2017
2018
2019
2020
In paleoichthyology
2014
2015
2016
2017
2018
2019
2020
In paleomalacology
2014
2015
2016
2017
2018
2019
2020
In reptile paleontology
2014
2015
2016
2017
2018
2019
2020
In archosaur paleontology
2014
2015
2016
2017
2018
2019
2020

Metatherians

edit

Research

edit
  • A study on the morphology and phylogenetic relationships of Eobrasilia coutoi is published by Carneiro & Oliveira (2017).[1]
  • New information on the skull anatomy of Peratherium cuvieri is published by Selva & Ladevèze (2017).[2]
  • Zeusdelphys complicatus from the Eocene of Brazil is interpreted as a member of Hatcheriformes by Carneiro & Oliveira (2017).[3]
  • Description of the skull morphology of Epidolops ameghinoi and a study on the phylogenetic relationships of Polydolopimorphia is published by Beck (2017).[4]
  • A study on the causes of decline and extinction of sparassodonts is published by López-Aguirre et al. (2017).[5]
  • A study on the age of a specimen of Zygomaturus trilobus recovered from the Willandra Lakes locality (Australia), indicating that this species persisted for a considerable time after the first arrival of Indigenous Australians, is published by Westaway, Olley & Grün (2017).[6]
  • A study evaluating whether the decline of Australian megafaunal population in the Pleistocene, leading to megafaunal extinction in Australia, was caused by the climate changes is published by van der Kaars et al. (2017).[7]
  • A study on the environmental setting and diet of marsupials from two concentrated, fossil bone horizons at Cuddie Springs (Australia: one from the middle Pleistocene, and the second from the late Pleistocene, based on isotopic data and teeth microwear, is published by DeSantis et al. (2017).[8]
  • A study on the Pleistocene marsupial Diprotodon optatum, indicating it undertook seasonal, two-way migration in eastern Sahul, is published by Price et al. (2017).[9]
  • A study on the species richness and relative abundance of macropodiform marsupials from Riversleigh is published by Butler et al. (2017).[10]
  • A study exploring the potential of the collagen fingerprinting method also known as Zooarchaeology by Mass Spectrometry in studying Australian vertebrate palaeobiodiversity, using it to identify Late Pleistocene kangaroo fossils from two caves in Tasmania, is published by Buckley et al. (2017).[11]
  • A study on the Oligo-Miocene local faunas from the Riversleigh World Heritage Area (Australia), aiming to identify potential mammalian palaeocommunities and palaeocommunity types, is published by Myers et al. (2017).[12]

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Anatoliadelphys[13]

Gen. et sp. nov

Valid

Maga & Beck

Eocene (Lutetian)

Uzunçarşıdere Formation

  Turkey

A probable non-marsupial member of Marsupialiformes. The type species is A. maasae.

 

Barinya kutjamarpensis[14]

Sp. nov

Valid

Binfield et al.

Miocene

Wipajiri Formation

  Australia

Perameles wilkinsonorum[15]

Sp. nov

Valid

Travouillon et al.

Pliocene

  Australia

A bandicoot, a species of Perameles.

Silvicultor[15]

Gen. et comb. et 2 sp. nov

Valid

Travouillon et al.

Pliocene

  Australia

A bandicoot. The type species is "Peroryctes" tedfordi Turnbull, Ludelius & Archer (2003); genus also includes new species S. karae and S. hamiltonensis.

Wakaleo schouteni[16]

Sp. nov

Valid

Gillespie, Archer & Hand

Late Oligocene and early Miocene

Riversleigh World Heritage Area

  Australia

A member of the family Thylacoleonidae.

Eutherians

edit

Research

edit
  • A study on the timing of the diversification of placental mammals based on genomic data, indicating that the placentals underwent a continuous radiation across the Cretaceous–Paleogene boundary without apparent interruption by the Cretaceous–Paleogene extinction event, is published by Liu et al. (2017).[17][18][19]
  • A study on the completeness of the eutherian fossil record, intending to establish whether the lack of placental mammal fossils in the Cretaceous is more likely to be caused by poor fossil record or by genuine absence of placental mammals in the Cretaceous, is published by Davies et al. (2017).[20]
  • Revision of the fossil material of the species assigned to the basal eutherian genus Prokennalestes and a study on their morphological and size variability is published by Lopatin & Averianov (2017).[21]
  • A study on the impact of biotic (competition pressure) and abiotic factors (environmental change) on the evolutionary success, decline and extinction of large fossil herbivorous mammals from North America, Europe and Turkana Basin in Africa is published by Žliobaitė, Fortelius & Stenseth (2017).[22]
  • A study on the impacts of temperature and human activities in causing extirpations on local and regional scales, as well as on the causes of the extinction or major extirpations of four megafauna mammalian groups (i.e. mammoth, rhinoceros, horse and deer) in the Late Pleistocene and Holocene, is published by Wang & Zhang (2017).[23]
  • A study of the phylogenetic relationships of the Paleocene placental mammals is published by Halliday, Upchurch and Goswami (2017).[24]
  • A study on the impact of the Eocene Thermal Maximum 2 on the evolution of the body size in four placental lineages, especially in the early equid lineage Arenahippus pernix, is published by D'Ambrosia et al. (2017).[25]
  • A study evaluating whether the extinction of the Pleistocene megafauna of North America was caused by rapid overhunting after the appearance of humans by comparing the dates of the last appearances of megafauna and first appearances of humans across North America is published by Emery-Wetherell, McHorse & Davis (2017).[26]
  • Menéndez et al. (2017) infer the climatic variables for the middle Miocene of the Somosaguas vertebrate fossil site (Spain) on the basis of the body size structure of the mammal fauna known from the site, which is intimately related to climate and vegetation.[27]
  • Carnivore marks are identified on mammal bones from the Pleistocene of Argentina, including three ground sloth bones and one toxodontid bone, by Chichkoyan et al. (2017).[28]
  • Description of the osteology of the skull of the pampathere Holmesina floridanus based on the fossils from the Blancan of Florida is published by Gaudin & Lyon (2017).[29]
  • A study on the diet of Pleistocene glyptodonts and ground sloths from the Pleistocene of Argentina as indicated by δ13C values in bone collagen and carbonate is published by Bocherens et al. (2017).[30][31][32]
  • A study on the phylogenetic placement of members of the genus Thalassocnus within Megatheria is published by Amson, de Muizon & Gaudin (2017).[33]
  • Description of new mylodontine sloth remains from the late Pleistocene of Ecuador and Peru and a revision of the taxonomy of the genus Glossotherium is published by De Iuliis et al. (2017), who consider Glossotherium tropicorum to be a valid species.[34]
  • A study on a specimen of Stegomastodon platensis (or Notiomastodon platensis) recovered from Pleistocene fluvial sediments in the Santiago Basin (Chile), recovering life history information relating to the final four years of life and the season of death, is published by El Adli et al. (2017).[35]
  • An incomplete juvenile skull of Gomphotherium wimani from the Miocene Hujialiang Formation and cheek teeth of a member of the same species from the Miocene Dongxiang Formation (China) are described by Yang, Li & Wang (2017).[36]
  • A study on the dietary differences between members of the genera Sinomastodon, Stegodon and Elephas from the Pleistocene of South China is published by Zhang et al. (2017).[37]
  • Pleistocene proboscidean remains associated with human teeth are described from the Mawokou Cave (Guizhou, China) by Wang et al. (2017), who assign this fossil material to the species Stegodon orientalis and Elephas maximus.[38]
  • A study on the population dynamics of the mammoths and mastodons in the North American Midwest during the late Pleistocene and the possible causes of their regional extinction is published by Widga et al. (2017).[39]
  • A study on the regional variability of the diet of the American mastodon (Mammut americanum) is published by Green, DeSantis & Smith (2017).[40]
  • Meyer et al. (2017) report the recovery of full mitochondrial genomes from four and partial nuclear genomes from two fossils of the straight-tusked elephant (Palaeoloxodon antiquus), the analysis of which indicated that the straight-tusked elephant was a close relative of the African forest elephant.[41]
  • A study on the detrimental mutations in members of the relict, Holocene population of the woolly mammoth from the Wrangel Island prior to the extinction of the population is published by Rogers & Slatkin (2017).[42]
  • A study on the phylogenetic relationships of the late Pleistocene woolly mammoth populations based on the data set of 143 mammoth mitochondrial genomes is published by Chang et al. (2017).[43]
  • A study determining the sex of 98 woolly mammoth specimens collected at various locations throughout Siberia is published by Pečnerová et al. (2017), who report a significant skew toward males among the studied specimens and search for possible explanations of the observed skew in sex ratio.[44]
  • Fellows Yates et al. (2017) identify and generate twenty woolly mammoth mitochondrial genomes based on Late Pleistocene material from central Europe.[45]
  • A study on the habitat preferences of the desmostylians Desmostylus and Paleoparadoxia as indicated by their fossil occurrences is published by Matsui et al. (2017).[46]
  • A study on the humeral morphology of the desmostylians, intending to establish whether different desmostylian genera can be distinguished on the basis of their humeri, is published by Matsui (2017).[47]
  • Description of cranial and postcranial remains of Pyrotherium from the Oligocene locality of Quebrada Fiera (Mendoza Province, Argentina) is published by Cerdeño & Vera (2017).[48]
  • A study on the diversity of bats of Haiti through time based on fossil evidence is published by Soto-Centeno, Simmons & Steadman (2017).[49]
  • A study on the body size variation in Neogene odd-toed ungulates and even-toed ungulates from Europe and North America and on whether it is correlated with origination and/or extinction rates across clades and regions is published by Huang et al. (2017).[50]
  • A redescription of the skull anatomy of the holotype specimen of Eoastrapostylops riolorense, with an emphasis on the auditory region, is published by Kramarz, Bond & Rougier (2017), who interpret this species as a member of a basal meridiungulate lineage that diverged before the differentiation among astrapotheres, pyrotheres and notoungulates.[51]
  • A description of the microstructure of the tooth enamel of Carodnia vieirai is published by Bergqvist & von Koenigswald (2017).[52]
  • A fossil of the litoptern species Neolicaphrium recens is described from the Pleistocene deposits of the Río Dulce (Santiago del Estero Province, Argentina) by Gaudioso et al. (2017), representing the northernmost and westernmost record of the species.[53]
  • A nearly complete mitochondrial genome of the litoptern Macrauchenia patachonica is recovered by Westbury et al. (2017).[54]
  • A study on variation in teeth growth and eruption in notoungulates in the context of geological, climatic and environmental changes taking place in South America from the late Paleocene onwards is published by Gomes Rodrigues, Herrel & Billet (2017).[55]
  • A systematic revision of members of the family Archaeopithecidae from the Eocene of Patagonia (Argentina) is published by Vera (2017), who recognizes Archaeopithecus rogeri as the only valid species.[56]
  • A study on the phylogenetic relationships of hegetotheriid notoungulates, as well as their possible ancestral area and vicariance, dispersal and extinction events, is published by Seoane, Roig Juñent & Cerdeño (2017).[57]
  • Revision of the content of the hegetotheriid species Prohegetotherium sculptum based on a reexamination of the type specimens and a study on the phylogenetic relationships of hegetotheriids is published by Kramarz & Bond (2017).[58]
  • Description of a skeleton of Thomashuxleya externa with a well-preserved skull and jaws associated with postcrania, recovered from the Eocene of Cañadón Vaca (Argentina), and a study on the phylogenetic relationships of the species is published by Carrillo & Asher (2017).[59]
  • A study comparing tooth morphology and development in mesotheriid notoungulates and extant gundis is published by Gomes Rodrigues et al. (2017).[60]
  • A study on the diet of the three most abundant ungulates from the La Brea Tar Pits (Bison antiquus, Camelops hesternus and Equus occidentalis) is published by Jones & DeSantis (2017).[61]
  • Description of the morphology of the skeleton of Hyrachyus modestus is published by Bai et al. (2017).[62]
  • A description of new fossil material of the helaletid tapiroids Paracolodon fissus and Desmatotherium mongoliense from the Eocene Irdin Manha Formation (Inner Mongolia, China) and a study on the phylogenetic relationships of these species is published by Bai et al. (2017).[63]
  • A study on the phylogenetic relationships of the rhinoceros genus Stephanorhinus based on ancient protein sequences is published by Welker et al. (2017).[64]
  • Skull of Stephanorhinus kirchbergensis is described from the Chondon River valley (Arctic Yakutia, Russia) by Kirillova et al. (2017), representing the first find of a member of the genus Stephanorhinus above the Arctic Circle.[65]
  • A study on the incidence of developmental abnormalities in the neck vertebrae (the presence of cervical ribs) in the late Pleistocene population of the woolly rhinoceros (Coelodonta antiquitatis) is published by van der Geer & Galis (2017).[66]
  • Skeleton of a pregnant mare of Eurohippus messelensis with preserved soft tissues is described from the Eocene Messel pit (Germany) by Franzen & Habersetzer (2017).[67]
  • A study on the speciation rates and the evolution of body size and tooth morphology in Neogene and Quaternary radiation of horses is published by Cantalapiedra et al. (2017).[68]
  • A study on the fossil horse metapodials, testing how locomotor bone stresses changed with digit reduction and increasing body size across the horse lineage, is published by McHorse, Biewener & Pierce (2017).[69]
  • A study on the ontogenetic changes in the teeth of the late Miocene hipparionines based on fossils from Fugu (Shaanxi, China) is published by Li et al. (2017).[70]
  • A study on the diet and habitat of specimens of Dinohippus mexicanus and Neohipparion eurystyle known from the late Hemphillian localities in central Mexico as indicated by stable carbon and oxygen isotopes determined in molar enamel is published by Pérez-Crespo et al. (2017).[71]
  • A study on the number of species of horses that inhabited the Western Interior of North America prior to the end-Pleistocene extinction, based on cheek tooth morphology and ancient mtDNA, is published by Barrón-Ortiz et al. (2017).[72]
  • A study on the growth pattern of the first lower molar in extant and extinct species of Equus and its relationship with life history events is published by Nacarino-Meneses et al. (2017).[73]
  • A study on the morphology of the middle ear and bony labyrinth of the anoplotheriid even-toed ungulate Diplobune minor and their implications for the locomotion of members of this species is published by Orliac, Araújo & Lihoreau (2017).[74]
  • Fossils of a member of the camelid genus Hemiauchenia are described from the late Pliocene of Argentina by Gasparini et al. (2017), representing the oldest record of the tribe Lamini in South America reported so far.[75]
  • DNA sequence data is generated for samples of 12 flat-headed peccary specimens from the Sheriden Cave (Ohio, United States) by Perry et al. (2017).[76]
  • A study on the morphology of the bony labyrinth of extant and extinct deers and on the phylogenetic relationships of fossil deers is published by Mennecart et al. (2017).[77]
  • Deer fossil (almost complete humerus) is reported from the late Miocene sedimentary sequence of the Bira Formation at Hagal Stream (western margin of the Jordan Valley, Israel) by Rozenbaum et al. (2017), representing the first record of a terrestrial mammal reported from the sequence.[78]
  • An ossicone and postcranial remains of giraffes of uncertain specific assignment are described from the Miocene of the Potwar Plateau (Pakistan) by Danowitz, Barry & Solounias (2017).[79]
  • Mouflon bones are reported from the late Pleistocene of eastern Jordan by Yeomans, Martin & Richter (2017).[80]
  • A study on the diet of the Miocene bovid Hezhengia bohlini as indicated by enamel microwear is published by Semprebon, Solounias & Tao (2017).[81]
  • A study on the timing of bison arrival in North America as indicated by mitochondrial genomes extracted from fossil specimens is published by Froese et al. (2017).[82][83]
  • A study on the phylogenetic relationships of the Pleistocene species Bison schoetensacki as indicated by recovered ancient DNA is published by Palacio et al. (2017).[84]
  • Partial skeleton of a bison related to the steppe bison is described from the middle Holocene (~ 5,400 years ago) of Yukon (Canada) by Zazula et al. (2017), confirming local survival of northern steppe bison populations into the Holocene.[85]
  • Description of new dental remains of the anthracothere Hemimeryx blanfordi from Late Oligocene deposits of the Bugti Hills (Chitarwata Formation, Pakistan), representing the first undisputed Oligocene occurrence of the species, and a study on the molar enamel microstructure and the phylogenetic relationships of the species is published by Lihoreau et al. (2017).[86]
  • Description of the bony labyrinth of two Eocene (Lutetian) protocetid specimens from Kpogamé (Togo) and a study on the implications of the anatomy of the specimens for the hearing abilities of early whales is published by Mourlam & Orliac (2017).[87]
  • A detailed description of the holotype specimen of Cynthiacetus peruvianus and a study on the phylogenetic relationships of archaeocetes (especially basilosaurids) is published by Martínez-Cáceres, Lambert & de Muizon (2017).[88]
  • A study on the anatomy of the inner ear of Oligocene mammalodontid and aetiocetid cetaceans and their ability to detect low frequencies is published by Park et al. (2017).[89]
  • New Oligo-Miocene eomysticetid specimens are described from New Zealand by Boessenecker & Fordyce (2017), including a member of the genus Waharoa from the earliest Miocene (the most recent eomysticetid specimen reported so far).[90]
  • Five xenorophid specimens (four specimens belonging to the species Albertocetus meffordorum and one member of the genus Echovenator) are described from the Oligocene of North and South Carolina (United States) by Boessenecker, Ahmed & Geisler (2017).[91]
  • Two teeth of a large toothed whale from the group Physeteroidea (belonging or related to the genus Zygophyseter) are described from the Middle or Upper Miocene of Netherlands by Reumer, Mens & Post (2017).[92]
  • A study on the phylogenetic relationships of Araeodelphis natator (Miocene relative of the South Asian river dolphin) is published by Godfrey, Barnes & Lambert (2017).[93]
  • A study of the fossil record of the mysticetes, testing when and how gigantism evolved in mysticetes, is published by Slater, Goldbogen & Pyenson (2017).[94]
  • A study on the teeth sharpness and function in archaic mysticetes is published by Hocking et al. (2017).[95]
  • Exceptionally preserved baleen apparatus of Piscobalaena nana from the Miocene Pisco Formation (Peru) is described by Marx et al. (2017).[96]
  • Pygmy right whale fossils are described from the Pleistocene of Italy and Japan by Tsai et al. (2017).[97]
  • A study on the anatomy and phylogenetic relationships of the Miocene balaenid Morenocetus parvus is published by Buono et al. (2017).[98]
  • A partial skull of a right whale (a member or a relative of the genus Eubalaena) is described from the Pliocene Tjörnes Formation (Iceland) by Field et al. (2017).[99]
  • A Miocene breeding site for Parietobalaena yamaokai known from Itahashi Formation (Japan) is reported by Tsai (2017).[100]
  • The oldest known fossil of a fin whale (a tympanic bulla) is described from the Early Pleistocene of Northern California by Tsai & Boessenecker (2017).[101]
  • A study on the correlates between the morphology of the calcaneum and the locomotor mode in extant carnivorans, and their implications for determining the locomotor mode in extinct carnivorans and creodonts, is published by Panciroli et al. (2017).[102]
  • A study on the morphology of the primary teeth and teeth eruption sequence in hyainailouroid hyaenodonts is published by Borths & Stevens (2017).[103]
  • A study on the anatomy of the bony labyrinth of Hyaenodon exiguus and its implications for the paleobiology of the species is published by Pfaff et al. (2017).[104]
  • An incus of Hyaenodon (the first known auditory ossicle of this genus and of any hyaenodont mammal so far) is described and compared to a large set of includes of extant carnivorans by Bastl, Nagel & Solé (2017).[105]
  • A study on the frequency of traumatic injuries across skeletal elements in the saber-toothed cat Smilodon fatalis and the dire wolf (Canis dirus) from La Brea Tar Pits is published by Brown et al. (2017).[106]
  • A revision of canid fossils from the late Pliocene site of Kvabebi (Georgia), revealing the co-occurrence of members of the genera Nyctereutes, Eucyon and Vulpes, is published by Rook et al. (2017).[107]
  • A study on the morphological adaptations linked to grasping and digging ability, substrate preference and locomotory mode in the forelimb of Cyonasua is published by Tarquini et al. (2017).[108]
  • A reevaluation of the Miocene mustelid Hadrictis fricki is published by Valenciano et al. (2017), who consider Hadrictis to be a junior synonym of the genus Eomellivora and transfer H. fricki to the genus Eomellivora.[109]
  • An upper carnassial of the tayra (Eira barbara) is described from the Late Pleistocene of Entre Ríos (Argentina) by Schiaffini et al. (2017).[110]
  • Fossil otter Enhydritherium terraenovae is reported from the late Miocene deposits of Juchipila Basin (Mexico) by Tseng et al. (2017).[111]
  • A study on the mandibular feeding capability of the fossil otter Siamogale melilutra is published by Tseng et al. (2017).[112]
  • Teeth and humerus of the fossil otter Lutra simplicidens are described from the early Middle Pleistocene site of Voigtstedt (Germany) by Cherin (2017).[113]
  • A description of the skull and neck morphology and a study on the feeding behaviour of the bear dog Magericyon anceps is published by Siliceo et al. (2017).[114]
  • A revision of the fossil bear species "Ursus" abstrusus Bjork (1970) based on new remains from the Pliocene of Ellesmere Island (Nunavut, Canada) is published by Wang et al. (2017), who transfer this species to the genus Protarctos.[115]
  • A study on the absolute and relative brain size of the cave bear (Ursus spelaeus), comparing it with brain size of extant bear species, an on potential variables affecting their brain size evolution is published by Veitschegger (2017).[116]
  • A study estimating the extinction time of the cave bear and Ursus ingressus is published by Mackiewicz et al. (2017).[117]
  • A revision and a study on the phylogenetic relationships of the Miocene earless seals assigned to the genera Prophoca and Leptophoca is published by Dewaele, Lambert & Louwye (2017).[118]
  • A skull of Hyaenictis aff. almerai, representing the most complete European specimen of the genus, is described from the Miocene of Spain by Vinuesa et al. (2017).[119]
  • A study on the dietary ecology of the Pleistocene hyena Crocuta crocuta ultima from China, evaluating its similarity to the dietary ecology of the extant spotted hyena, is published by DeSantis et al. (2017).[120]
  • A study on the evolution of the fore- and hindlimbs of sabretooth carnivorans is published by Martín-Serra, Figueirido & Palmqvist (2017).[121]
  • A study on the growth of forelimb bones of Smilodon fatalis as indicated by the anatomy of specimens recovered from the La Brea Tar Pits is published by Long et al. (2017).[122]
  • Paijmans et al. (2017) present partial mitochondrial genomes of Smilodon populator and members of the genus Homotherium, and identify a late Pleistocene (~28,000 years old) mandible recovered from the Brown Bank region in the North Sea as a fossil of a member of the genus Homotherium.[123]
  • A study on the phylogenetic relationships of "Felis" pamiri Ozansoy (1959) from the late Miocene of Turkey is published by Geraads & Peigné (2017).[124]
  • A study on the braincase anatomy of the American lion (Panthera atrox) is published by Cuff, Stockey & Goswami (2017).[125]
  • Cuff, Goswami & Hutchinson (2017) estimate the size of the musculature of the limbs and vertebral column of the American lion.[126]
  • Fossils of a large felid from the late Pleistocene localities at southern Chile and Argentina are interpreted as fossils of the American lion by Chimento & Agnolin (2017).[127]
  • A study on the tooth morphology of extant and extinct murine and non-arvicoline cricetid rodents and its implications for inferring the paleoecology of the Neogene rodents from southern France and Iberian Peninsula is published by Gomez Cano et al. (2017).[128]
  • First known fossil remains of the Ilin Island cloudrunner (Crateromys paulus) are described by Reyes et al. (2017).[129]
  • Description of new specimens of the castorid rodent Propalaeocastor irtyshensis from the Oligocene Irtysh River Formation (China and a study on the phylogenetic relationships among early castorids is published by Li et al. (2017).[130]
  • Virtual cranial endocast of the Oligocene sciurid Cedromus wilsoni is reconstructed by Bertrand, Amador-Mughal & Silcox (2017).[131]
  • The oldest known plesiadapiform skeleton (partial skeleton of Torrejonia wilsoni) is described from the early Paleocene Nacimiento Formation (New Mexico, United States) by Chester et al. (2017).[132]
  • Report on the discovery of a talus bone of Donrussellia provincialis and a study on the anatomy of this bone and on the phylogenetic relationships of this species is published by Boyer, Toussaint & Godinot (2017).[133]
  • A study on the locomotion and lifestyle of Adapis parisiensis as indicated by inner ear morphology is published by Bernardi & Couette (2017).[134]
  • New material attributed to Agerinia smithorum, consisting of isolated teeth and a fragment of calcaneus, is described from the Eocene locality of Casa Retjo-1 (Spain) by Femenias-Gual et al. (2017).[135]
  • Jaws referred to the species Notharctus tenebrosus are described from the middle Eocene Sheep Pass Formation (Nevada, United States) by Perry, Gunnell & Emry (2017).[136]
  • The first known nearly complete female skull of the gelada subspecies Theropithecus oswaldi leakeyi is described from the Pleistocene site of Makuyuni (Tanzania) by Frost et al. (2017).[137]
  • A study on the anatomy of the teeth of Mesopithecus pentelicus and its implication for dietary preferences of members of the species is published by Thiery et al. (2017).[138]
  • New fossil material of Krishnapithecus krishnaii is described from the late Miocene of Himachal Pradesh (India) by Sankhyan, Kelley & Harrison (2017), who confirm the pliopithecoid affinities of the species.[139]
  • A study on the morphology of the teeth and jaws of Morotopithecus bishopi and Afropithecus turkanensis, indicating them to be likely distinct species with dissimilar feeding adaptations, is published by Deane (2017).[140]
  • A study on the phylogenetic relationships of Graecopithecus, indicating its possible affinity with hominins (humans and their non-ape ancestors), is published by Fuss et al. (2017);[141] a different analysis, aiming to refute the hypothesis that Graecopithecus is a member of the hominin clade, is subsequently published by Benoit & Thackeray (2017).[142][143]
  • A study on the age of the fossils of Graecopithecus freybergi, and on the environmental conditions under which it thrived, is published by Böhme et al. (2017).[144]
  • Putative tetrapod footprints with hominin-like characteristics are described from the late Miocene of Crete (Greece) by Gierliński et al. (2017);[145] the study is subsequently criticized by Meldrum & Sarmiento (2018) in regards to the interpretation of the putative footprints[146] and by Zachariasse & Lourens (2022) in regards to their age.[147]
  • A study on the evolution of body mass and stature of hominins is published by Will, Pablos & Stock (2017).[148]
  • Partial skeleton of Australopithecus afarensis, preserving all seven neck vertebrae and 12 rib-bearing vertebrae (like humans, rather than 13 like African apes) is described from Dikika (Ethiopia) by Ward et al. (2017).[149]
  • New fossils attributable to the species Australopithecus anamensis are described from Kanapoi (Kenya) by Ward, Plavcan & Manthi (2017).[150]
  • A study on the skeletal maturation of Australopithecus sediba is published by Cameron et al. (2017).[151]
  • A study on the morphology of the holotype skull of Australopithecus sediba and its implications for the phylogenetic relationships of the species is published by Kimbel & Rak (2017).[152]
  • A study on the aridity in eastern Africa over the past 4.4 million years as indicated by oxygen isotope ratios in fossil herbivore tooth enamel, and on its implications for inferring the role of climate in shaping early hominin environments, is published by Blumenthal et al. (2017).[153]
  • A study on the environmental changes in the lower Awash Valley and Turkana Basin from 3.5 to 1 million years ago (with a focus on the latest Pliocene) based on new analyses of mammal communities and new stable carbon isotope data for mammalian tooth enamel, including that of the earliest members of the genus Homo, is published by Robinson et al. (2017).[154]
  • A study on the modified mammalian bones from the Plio–Pleistocene of Ethiopia is published by Sahle, El Zaatari & White (2017), who interpret the marks on some of these bones as more likely to be produced by crocodiles than by hominids using stone tools.[155]
  • A study on the knapping skills of the hominins inhabiting North China during early Pleistocene as indicated by stone tools from the Donggutuo locality is published by Yang et al. (2017).[156]
  • A study on the phylogenetic relationships of Homo floresiensis is published by Argue et al. (2017).[157]
  • A study on the age of the fossils of Homo naledi is published by Dirks et al. (2017).[158]
  • New fossils of Homo naledi are described from the Lesedi Chamber of the Rising Star Cave system by Hawks et al. (2017).[159]
  • A study on the phylogenetic relationships of Homo naledi as indicated by skull morphology is published by Schroeder et al. (2017).[160]
  • Studies on the anatomy of the skeleton of Homo naledi are published by Laird et al. (2017),[161] Williams et al. (2017),[162] Feuerriegel et al. (2017)[163] and Marchi et al. (2017).[164]
  • A study on the location, number, and severity of fractures in the teeth of Homo naledi and their implications for the diet of the taxon is published by Towle, Irish & De Groote (2017).[165]
  • A study on the body size, proportions and absolute and relative brain size in Homo naledi is published by Garvin et al. (2017).[166]
  • A study on the tooth formation and eruption in Homo naledi is published by Cofran & Walker (2017).[167]
  • A phenetic analysis of the fossils of Homo naledi is published by Neves, Bernardo & Pantaleoni (2017), who consider both Homo naledi and Australopithecus sediba to be likely junior synonyms of Homo habilis.[168]
  • A study on the age of the Vallonnet site (France) and on its implications for the knowledge of the first dispersals of members of the genus Homo during the early Pleistocene (Calabrian) in this area of Europe is published by Michel et al. (2017).[169]
  • Two skulls of archaic members of the genus Homo of uncertain phylogenetic placement are described from the Pleistocene of China by Li et al. (2017).[170]
  • A study on the affinities of the Pleistocene hominin cranium from Dali in Shaanxi Province, China is published by Athreya & Wu (2017).[171]
  • A description of a hominin skull recovered from the Aroeira cave in Portugal, dated as approximately 400,000 years old, and a study on its implications for the diversity of the Middle Pleistocene European hominins is published by Daura et al. (2017).[172]
  • A 130,000-year-old rocks interpreted as hammerstones and stone anvils, associated with remains of a mastodon (Mammut americanum) showing signs of breakage, are described from the Cerutti Mastodon site in California by Holen et al. (2017), who interpret the finding as indicating that an unidentified species of Homo reached North America during the early late Pleistocene;[173][174] the study is subsequently criticized by Haynes (2017), Braje et al. (2017), Ferraro et al. (2018), Ferrell (2019) and Sutton, Parkinson & Rosen (2019).[175][176][177][178][179][180][181][182]
  • Traces of ancient mammalian DNA, including Neanderthal and Denisovan DNA, are identified in Pleistocene cave sediments, including those lacking skeletal remains, by Slon et al. (2017).[183]
  • A study on the evolutionary history of Neanderthals and Denisovans based on genetic data is published by Rogers, Bohlender & Huff (2017).[184][185][186]
  • Slon et al. (2017) report the retrieval of DNA from a molar of a Denisovan, considered by the authors to be one of the oldest hominin remains discovered at Denisova Cave.[187]
  • A study on the age of Neanderthal remains recovered from Vindija Cave (Croatia) is published by Devièse et al. (2017).[188]
  • Prüfer et al. (2017) sequence the genome of a Neanderthal woman known from remains found in Vindija Cave.[189]
  • Complete mtDNA is reported from a Neanderthal femur from the Hohlenstein-Stadel cave (Germany) by Posth et al. (2017), who evaluate the implications of this finding for the knowledge of the timing of genetic introgression event from African hominins into Neanderthal populations.[190]
  • A study on the growth patterns of Neanderthals based on a partial skeleton of a Neanderthal child from the El Sidrón site (Spain) is published by Rosas et al. (2017).[191][192][193]
  • A study on the genetic contribution of Neanderthals to phenotypic variation in modern humans is published by Dannemann & Kelso (2017).[194]
  • A reconstruction of the internal nasal cavity of a Neanderthal and a study comparing the breathing cycle in Neanderthals and modern humans is published by de Azevedo et al. (2017).[195][196][197]
  • A study on the hunting strategies of the Neanderthals based on data from the deer and horse remains from the Abric Romaní site (Catalonia, Spain) is published by Marín et al. (2017).[198]
  • The first genetic analysis of dental calculus from five Neanderthal individuals from El Sidrón cave in Spain, Spy Cave in Belgium and Breuil Grotta in Italy is published by Weyrich et al. (2017), who also evaluate the implications of their findings for inferring Neanderthal diet, behaviour, and disease;[199] the authors' interpretation of their results is subsequently criticized by Charlier, Gaultier & Héry-Arnaud (2019).[200]
  • Fossils of early humans (Homo sapiens) are described from the Middle Stone Age site of Jebel Irhoud (Morocco) by Hublin et al. (2017)[201] and their age is estimated by Richter et al. (2017).[202]
  • Teeth of modern humans recovered from the Lida Ajer cave in Sumatra (Indonesia) are dated as between 73,000 and 63,000 years old by Westaway et al. (2017).[203]
  • Artifacts recovered at Madjedbebe, a rock shelter in northern Australia, indicating that humans colonized Australia at least 65,000 years ago, are reported by Clarkson et al. (2017);[204] their conclusions about the age of these artifacts are subsequently questioned by Allen (2017)[205][206] and O'Connell et al. (2018).[207]
  • A study on the diet of the oldest anatomically modern humans from southeast Europe, based on isotopic data from human bones from the Pleistocene of Crimea, is published by Drucker et al. (2017).[208]

New taxa

edit

Xenarthrans

edit
Name Novelty Status Authors Age Unit Location Notes Images

Baraguatherium[209]

Gen. et sp. nov

Valid

Rincón et al.

Early Miocene

Castillo Formation

  Venezuela

A mylodontoid sloth. The type species is Baraguatherium takumara.

Epipeltephilus caraguensis[210]

Sp. nov

Valid

Montoya-Sanhueza et al.

Late Miocene

Huaylas Formation

  Chile

An armadillo.

Eutatus crispianii[211]

Sp. nov

Valid

Brambilla & Ibarra

Lujanian

Saladillo Formation

  Argentina

An armadillo.

Lumbreratherium[212]

Gen. et sp. nov

Valid

Herrera et al.

Eocene

Lumbrera Formation

  Argentina

An armadillo. The type species is L. oblitum.

Nohochichak[213]

Gen. et sp. nov

Valid

McDonald, Chatters & Gaudin

Late Pleistocene

  Mexico

A ground sloth belonging to the family Megalonychidae. The type species is N. xibalbahkah.

Panochthus hipsilis[214]

Sp. nov

Valid

Zurita et al.

Pleistocene

  Bolivia

A glyptodont.

Proeocoleophorus[215]

Gen. et sp. nov

Valid

Sedor et al.

Probably late middle Eocene

Guabirotuba Formation

  Brazil

A member of Cingulata. Genus includes new species P. carlinii.

Ronwolffia[216]

Gen. et sp. nov

Valid

Shockey

Late Oligocene (Deseadan)

Salla Formation

  Bolivia

A member of Cingulata belonging to the family Peltephilidae. Genus includes new species R. pacifica.

Xibalbaonyx[217]

Gen. et sp. nov

Valid

Stinnesbeck et al.

Late Pleistocene

  Mexico

A ground sloth belonging to the family Megalonychidae. The type species is X. oviceps.

Zacatzontli[218]

Gen. et sp. nov

Valid

McDonald & Carranza-Castañeda

Late Miocene (Hemphillian)

  Mexico

A ground sloth belonging to the family Megalonychidae. The type species is Z. tecolotlanensis.

Afrotherians

edit
Name Novelty Status Authors Age Unit Location Notes Images

Gomphotherium tassyi[219]

Sp. nov

Valid

Wang et al.

Late middle Miocene

Hujialiang Formation

  China

Italosiren[220]

Gen. et comb. nov

Valid

Voss, Sorbi & Domning

Oligocene (late Chattian)

Belluno Glauconitic Sandstone Formation

  Italy

A member of Dugongidae; a new genus for "Halitherium" bellunense De Zigno (1875).

Kaupitherium[221]

Gen. et sp. et comb. nov

Valid

Voss & Hampe

Oligocene (Rupelian)

Alzey Formation
Bodenheim Formation
Böhlen Formation
Boom Clay Formation

  Belgium
  France
  Germany
  Hungary
   Switzerland

A member of Dugongidae. The type species is K. gruelli; genus also includes "Halitherium" bronni Krauss (1858).

 

Libysiren[222]

Gen. et sp. nov

Valid

Domning, Heal & Sorbi

Eocene (Lutetian)

  Libya

A member of Protosirenidae. Genus includes new species L. sickenbergi.

Tetralophodon euryrostris[223]

Sp. nov

Valid

Wang et al.

Late Miocene

Linxia Basin

  China

Bats

edit
Name Novelty Status Authors Age Unit Location Notes Images

Amazonycteris[224]

Gen. et sp. nov

Valid

Czaplewski & Campbell

Late Miocene

Içá Formation

  Brazil

A member of the family Thyropteridae. The type species is A. divisus.

Myotis belgicus[225]

Sp. nov

Valid

Gunnell, Smith & Smith

Oligocene (Rupelian)

Borgloon Formation

  Belgium

A mouse-eared bat.

Pipistrellus rouresi[226]

Sp. nov

Valid

Crespo et al.

Late Miocene

  Spain

A vesper bat, a species of Pipistrellus.

Rhinolophus antonioi[226]

Sp. nov

Valid

Crespo et al.

Late Miocene

  Spain

A horseshoe bat.

Xylonycteris[227]

Gen. et sp. nov

Valid

Hand & Sigé

Eocene (Ypresian)

  France

A member of the family Archaeonycteridae. The type species is X. stenodon.

Odd-toed ungulates

edit
Name Novelty Status Authors Age Unit Location Notes Images

Haringtonhippus[228]

Gen. et comb. nov

Valid

Heintzman et al.

Pleistocene

Lissie Formation

  Canada
(  Yukon
  Alberta?)
  United States
(  Nevada
  New Mexico
  Texas
  Wyoming
  Alaska?)
  Mexico?

A member of the family Equidae belonging to the subfamily Equinae and the tribe Equini; a new genus for "Equus" francisci Hay (1915).

 

Lophiohippus[229]

Gen. et comb. nov

Disputed

Bai

Eocene

Lunan Basin

  China

A member of the family Palaeotheriidae belonging to the subfamily Pachynolophinae; a new genus for "Lophialetes" yunnanensis Huang & Qi (1982). Subsequently Bai (2022) considered it a possible junior synonym of the genus Lunania.[230]

Orolophus[231]

Gen. et comb. nov

Valid

Remy

Eocene

  France

A palaeotheriid; a new genus for "Pachynolophus" maldani Lemoine (1878).

Paraceratherium huangheense[232]

Sp. nov

Valid

Li et al.

Early Oligocene

Hanjiajing Formation

  China

Pliolophus quesnoyensis[233]

Sp. nov

Valid

Bronnert et al.

Early Eocene

  France

Samburuceros[234]

Gen. et sp. nov

Valid

Handa et al.

Late Miocene

  Kenya

A rhinoceros belonging to the tribe Elasmotheriini. Genus includes new species S. ishidai.

Even-toed ungulates

edit
Name Novelty Status Authors Age Unit Location Notes Images

Afrotragus[235]

Gen. et comb. nov

Valid

Geraads

Miocene

Nawata Formation

  Kenya

A member of the family Bovidae; a new genus for "Aepyceros" premelampus Harris (2003).

Archaeopotamus qeshta[236]

Sp. nov

Valid

Boisserie et al.

Late Miocene

Baynunah Formation

  United Arab Emirates

A member of the family Hippopotamidae.

Beatragus vrbae[237]

Sp. nov

Valid

Bibi, Rowan & Reed

Late Pliocene

  Ethiopia

A relative of the hirola

Bubalus grovesi[238]

Sp. nov

Valid

Rozzi

Late Pleistocene-Holocene

  Indonesia

A species of Bubalus.

Choeromorus ibericus[239]

Sp. nov

Valid

Pickford

Miocene

  France
  Spain

A member of Suoidea belonging to the family Siderochoeridae.

Choeromorus petersbuchensis[239]

Sp. nov

Valid

Pickford

Miocene

  Germany

A member of Suoidea belonging to the family Siderochoeridae.

Chororatherium[240]

Gen. et sp. nov

Valid

Boisserie et al.

Late Miocene

  Ethiopia

A member of the family Hippopotamidae. Genus includes new species C. roobii.

Decennatherium rex[241]

Sp. nov

Valid

Ríos, Sánchez & Morales

Miocene (late Vallesian)

  Spain

A member of the family Giraffidae.

 

Grevenobos[242]

Gen. et sp. nov

Valid

Crégut-Bonnoure & Tsoukala

Late Pliocene

  Greece

A member of the family Bovidae belonging to the tribe Bovini. Genus includes new species G. antiquus.

Merycobunodon? walshi[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

  United States
(  Wyoming)

A member of the family Oromerycidae.

Micromeryx? eiselei[244]

Sp. nov

Valid

Aiglstorfer et al.

Miocene

  Germany

A member of the family Moschidae, possibly a species of Micromeryx.

Muknalia[245]

Gen. et sp. nov

Disputed

Stinnesbeck et al.

Probably latest Pleistocene

  Mexico

A peccary. The type species is M. minima. Schubert et al. (2020) considered this species to be synonymous with the collared peccary (Pecari tajacu).[246][247][248]

Paalitherium[249]

Gen. et sp. nov

Valid

Métais, Mennecart & Roohi

Oligocene

Chitarwata Formation

  Pakistan

A stem-pecoran. Genus includes new species P. gurki.

Parabos savelisi[250]

Sp. nov

Valid

Crégut-Bonnoure & Tsoukala

Pliocene

  Greece

A member of the family Bovidae belonging to the tribe Boselaphini.

Praeelaphus australorientalis[251]

Sp. nov

Valid

Croitor

Early Pliocene

  Romania
  Ukraine

An Old World deer.

Protherohyus[252]

Gen. et comb. nov

Valid

Parisi Dutra et al.

Hemphillian

  Mexico
  United States

A peccary; a new genus for "Desmathyus" brachydontus Dalquest & Mooser (1980).

Siderochoerus[239]

Gen. et sp. nov

Valid

Pickford

Miocene

  Germany

A member of Suoidea belonging to the family Siderochoeridae. Genus includes new species S. minimus.

Turkanatragus[235]

Gen. et sp. nov

Valid

Geraads

Miocene

Nawata Formation

  Kenya

A member of the family Bovidae. The type species is T. marymuunguae.

Urmiatherium kassandriensis[253]

Sp. nov

Valid

Lazaridis et al.

Late Miocene

  Greece

An ovibovine-like bovid.

Cetaceans

edit
Name Novelty Status Authors Age Unit Location Notes Images

Africanacetus gracilis[254]

Sp. nov

Valid

Ichishima et al.

Uncertain (middle Miocene-early Pliocene)

São Paulo Ridge (offshore)

  Brazil

A beaked whale.

Beneziphius cetariensis[255]

Sp. nov

Valid

Miján, Louwye & Lambert

Middle Miocene to early Pliocene

  Spain

A beaked whale.

Brujadelphis[256]

Gen. et sp. nov

Valid

Lambert et al.

Miocene (Serravallian to early Tortonian)

Pisco Formation

  Peru

A member of Inioidea. The type species is B. ankylorostris.

Coronodon[257]

Gen. et sp. nov

Valid

Geisler et al.

Oligocene (Rupelian)

Ashley Formation

  United States
(  South Carolina)

A basal member of Mysticeti. The type species is C. havensteini.

 

Dilophodelphis[258]

Gen. et sp. nov

Valid

Boersma, McCurry & Pyenson

Miocene (early Burdigalian)

Astoria Formation

  United States
(  Oregon)

A relative of the South Asian river dolphin. The type species is D. fordycei.

 

Eubalaena ianitrix[259]

Sp. nov

Valid

Bisconti, Lambert & Bosselaers

Pliocene (Piacenzian)

Lillo Formation

  Belgium

A right whale.

Inermorostrum[260]

Gen. et sp. nov

Valid

Boessenecker et al.

Oligocene

  United States
(  South Carolina)

A member of the family Xenorophidae. The type species is I. xenops.

 

Inticetus[261]

Gen. et sp. nov

Valid

Lambert et al.

Miocene (Burdigalian)

Chilcatay Formation

  Peru

A dolphin of uncertain phylogenetic placement, assigned to the new family Inticetidae. The type species is I. vertizi.

Koristocetus[262]

Gen. et sp. nov

Valid

Collareta et al.

Miocene (latest Tortonian or Messinian)

Pisco Formation

  Peru

A member of the family Kogiidae. The type species is K. pescei.

Mystacodon[263]

Gen. et sp. nov

Valid

Lambert et al.

Eocene (early Priabonian)

Yumaque Formation

  Peru

A basal member of Mysticeti. The type species is M. selenensis.

Olympicetus[264]

Gen. et sp. nov

Valid

Vélez-Juarbe

Late Oligocene

Pysht Formation

  United States
(  Washington)

A stem-odontocete. The type species is O. avitus.

 

Scaldiporia[265]

Gen. et sp. nov

Valid

Post, Louwye & Lambert

Late Miocene or earliest Pliocene

Breda Formation

  Netherlands

A relative of the La Plata dolphin. The type species is S. vandokkumi.

Tiucetus[266]

Gen. et sp. nov

Valid

Marx, Lambert & de Muizon

Miocene (Serravallian to early Tortonian)

Pisco Formation

  Peru

A member of the family Cetotheriidae. The type species is T. rosae.

 

Urkudelphis[267]

Gen. et sp. nov

Valid

Tanaka et al.

Oligocene (probably Chattian)

Dos Bocas Formation

  Ecuador

A member of Platanistoidea. The type species is U. chawpipacha.

Carnivorans

edit
Name Novelty Status Authors Age Unit Location Notes Images

Amphictis timucua[268]

Sp. nov

Valid

Baskin

Early Hemingfordian

  United States
(  Florida)

A member of the family Ailuridae.

Canis othmanii[269]

Sp. nov

Valid

Amri et al.

Early Middle Pleistocene

  Tunisia

A member of the family Canidae.

Eotaria citrica[270]

Sp. nov

Valid

Velez-Juarbe

Miocene (late Burdigalian to early Langhian)

  United States
(  California)

A stem eared seal.

Floridictis[268]

Gen. et sp. nov

Valid

Baskin

Early Hemingfordian

  United States
(  Florida)

A member of the family Mustelidae belonging to the subfamily Oligobuninae. Genus includes new species F. kerneri.

Leptofelis[271]

Gen. et comb. nov

Valid

Salesa et al.

Late Miocene

  Spain

A member of the family Felidae belonging to the subfamily Felinae; a new genus for "Styriofelis" vallesiensis Salesa et al. (2012). Announced in 2017; the final version of the article naming it was published in 2019.

 

Megantereon microta[272]

Sp. nov

Valid

Zhu et al.

Early Pleistocene

  China

A machairodontine felid, a species of Megantereon.

Miomaci[273]

Gen. et sp. nov

Valid

De Bonis et al.

Miocene (Vallesian)

  Hungary

A relative of the giant panda. The type species is M. panonnicum.

Nanophoca[274]

Gen. et comb. nov

Valid

Dewaele et al.

Miocene

Berchem Formation
Diest Formation
Kattendijk Formation

  Belgium

An earless seal; a new genus for "Phoca" vitulinoides Van Beneden (1871).

Panthera spelaea intermedia[275]

Subsp. nov

Valid

Argant & Brugal

Late Middle Pleistocene

  France

A subspecies of the Eurasian cave lion.

Parabrachypsalis[268]

Gen. et sp. nov

Valid

Baskin

Early Hemingfordian

  United States
(  Florida)

A member of the family Mustelidae belonging to the subfamily Oligobuninae. Genus includes new species P. janisae.

Paramachaerodus transasiaticus[276]

Sp. nov

Valid

Li & Spassov

Late Miocene

  Bulgaria
  China

A machairodontine felid.

Siamogale melilutra[277]

Sp. nov

Valid

Wang et al.

Late Miocene-Pliocene

Yushe Basin
Zhaotong Basin

  China

An otter, a species of Siamogale.

Terranectes[278]

Gen. et 2 sp. nov

Valid

Rahmat et al.

Late Miocene

Eastover Formation
St. Marys Formation

  United States
(  Virginia)

An earless seal belonging to the subfamily Monachinae. The type species is T. magnus; genus also includes T. parvus.

Lagomorphs

edit
Name Novelty Status Authors Age Unit Location Notes Images

Alilepus parvus[279]

Sp. nov

Valid

Wu & Flynn

Late Neogene

Yushe Basin

  China

A member of the family Leporidae.

Hypolagus mazegouensis[279]

Sp. nov

Valid

Wu & Flynn

Late Pliocene

Yushe Basin

  China

A member of the family Leporidae.

Ochotonoides teilhardi[279]

Sp. nov

Valid

Wu & Flynn

Late Pliocene

Yushe Basin

  China

A pika.

Paludotona minor[280]

Sp. nov

Valid

Angelone, Čermák & Rook

Miocene (Turolian)

  Italy

A member of Lagomorpha of uncertain phylogenetic placement.

Sericolagus yushecus[279]

Sp. nov

Valid

Wu & Flynn

Late Neogene

Yushe Basin

  China

A member of the family Leporidae.

Sinolagomys badamae[281]

Sp. nov

Valid

Erbajeva et al.

Late Oligocene

  Mongolia

A pika.

Rodents

edit
Name Novelty Status Authors Age Unit Location Notes Images

Acarechimys pascuali[282]

Sp. nov

Valid

Verzi, Olivares & Morgan

Early Miocene (Santacrucian)

Santa Cruz Formation

  Argentina

A stem-abrocomid, a species of Acarechimys.

Acritoparamys naomugengensis[283]

Sp. nov

Valid

Li, Mao & Wang

Eocene

Erlian Basin

  China

A member of the family Ischyromyidae.

Allactaga fru[284]

Sp. nov

Valid

Nesin & Kovalchuk

Miocene (early Turolian)

  Ukraine

A jerboa, a species of Allactaga.

Allocricetus primitivus[285]

Sp. nov

Valid

Wu & Flynn

Pliocene

Yushe Basin

  China

A hamster.

Altasciurus[286]

Gen. et comb. nov

Valid

Korth & Tabrum

Oligocene (Orellan to Whitneyan)

  United States
(  Colorado
  Montana
  Nebraska
  South Dakota
  Wyoming)

A member of the family Aplodontidae belonging to the subfamily Prosciurinae. The type species is "Paramys" relictus Cope (1873); genus also includes A. albiclivus (Korth, 1994) and A. clausulus (Korth, 2009).

Ameghinomys[282]

Gen. et comb. nov

Valid

Verzi, Olivares & Morgan

Early Miocene

  Argentina

A stem-abrocomid; a new genus for "Acarechimys" constans (Ameghino, 1887).

Apeomys asiaticus[287]

Sp. nov

Valid

Qiu

Late Early Miocene

Xiacaowan Formation

  China

A member of the family Eomyidae.

Apeomys oldrichi[288]

Sp. nov

Valid

Mörs & Flink

Early Miocene

  Germany

A member of the family Eomyidae.

Apocricetus darderi[289]

Sp. nov

Valid

Torres-Roig et al.

Pliocene (Zanclean)

  Spain

A member of the family Cricetidae.

Argyromys cicigei[290]

Sp. nov

Valid

López-Guerrero et al.

Late Oligocene

  China
  Mongolia

A member of the family Cricetidae.

Cardiomys leufuensis[291]

Sp. nov

Valid

Pérez, Deschamps & Vucetich

Late Miocene (Chasicoan)

Arroyo Chasicó Formation

  Argentina

A relative of the capybara.

Cavia cabrerai[292]

Sp. nov

Valid

Candela & Bonini

MiocenePliocene boundary

Andalhuala Formation

  Argentina

A species of Cavia (a relative of the guinea pig).

Caviodon andalhualensis[291]

Sp. nov

Valid

Pérez, Deschamps & Vucetich

Miocene (Messinian)

Andalhuala Formation

  Argentina

A relative of the capybara.

Collimys caucasicus[293]

Sp. nov

Valid

Tesakov in Tesakov et al.

Miocene (Turolian)

  Russia
(  Adygea)

A member of the family Cricetidae.

Cricetinus mesolophidos[285]

Sp. nov

Valid

Wu & Flynn

Pliocene

Yushe Basin

  China

A hamster.

Cricetodon goklerensis[294]

Sp. nov

Valid

Joniak et al.

Early Miocene

  Turkey

Cricetops auster[295]

Sp. nov

Valid

Li et al.

Early Oligocene

Caijiachong Formation

  China

A muroid rodent, a species of Cricetops.

Debruijnia kostakii[296]

Sp. nov

Valid

De Bruijn

Early Miocene

  Greece

A member of Spalacinae.

Democricetodon fejfari[297]

Sp. nov

Valid

Lindsay

Middle Miocene

  India[298]   Pakistan

A member of the family Cricetidae.

Democricetodon haltmari[294]

Sp. nov

Valid

Joniak et al.

Early Miocene

  Turkey

Desmodillus magnus[299]

Sp. nov

Valid

Denys & Matthews

Early Pliocene

Varswater Formation

  South Africa

A relative of the Cape short-eared gerbil.

Eobranisamys javierpradoi[300]

Sp. nov

Valid

Boivin et al.

Late middle Eocene

Pozo Formation

  Peru

A member of Caviomorpha belonging to the superfamily Cavioidea.

Eomys helveticus[301]

Sp. nov

Valid

Engesser & Kälin

Oligocene (Chattian)

   Switzerland

A member of the family Eomyidae.

Eomys schluneggeri[301]

Sp. nov

Valid

Engesser & Kälin

Oligocene (Chattian)

   Switzerland

A member of the family Eomyidae.

Eumyarion lukasi[294]

Sp. nov

Valid

Joniak et al.

Early Miocene

  Turkey

Extrarius[302]

Gen. et sp. nov

Valid

Erten

Quaternary

Tosunlar Formation

  Turkey

A member of the family Muridae. The type species is E. orhuni.

Ferigolomys[303]

Gen. et sp. nov

Valid

Kerber et al.

Late Miocene

Solimões Formation

  Brazil

A member of Dinomyidae. Genus includes new species F. pacarana.

Germanomys progressiva[304]

Sp. nov

Valid

Wu & Flynn

Pliocene

Mazegou Formation

  China

A member of Arvicolinae.

Germanomys yusheica[304]

Sp. nov

Valid

Wu & Flynn

Pliocene

Gaozhuang Formation

  China

A member of Arvicolinae.

Glirudinus matusi[294]

Sp. nov

Valid

Joniak et al.

Early Miocene

  Turkey

Heosminthus nomogenesis[305]

Sp. nov

Valid

Li, Gong & Wang

Late Eocene

  China

A member of Dipodidae.

Hispanomys romeroi[306]

Sp. nov

Valid

Piñero & Agustí

  Spain

A member of the family Cricetidae.

Hydrochoeropsis wayuu[307]

Sp. nov

Valid

Pérez et al.

Late Pliocene

Ware Formation
Cocinetas Basin

  Colombia

A member of Hydrochoerinae.

Hylopetes yuncuensis[308]

Sp. nov

Valid

Qiu

Late Neogene

Yushe Basin

  China

A squirrel, a species of Hylopetes.

Inopinatia[309]

Gen. et sp. nov

Valid

Marković et al.

Early Oligocene

  Serbia

A member of the family Diatomyidae. The type species is I. balkanica.

Karnimata fejfari[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

Late Miocene

Nagri Formation

  Pakistan

A member of the family Muridae.

Latocricetodon[294]

Gen. et comb. nov

Valid

Joniak et al.

Early Miocene

  Turkey

A new genus for "Spanocricetodon" sinuosus Theocharopoulos (2000).

Lophicylindrodon[286]

Gen. et sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

  United States
(  Montana)

A member of the family Cylindrodontidae. The type species is L. expiratus.

Metanoiamys norejkoi[311]

Sp. nov

Valid

Korth & Tabrum

Possibly Chadronian

Beaverhead Basin

  United States
(  Montana)

A member of the family Eomyidae.

Milimonggamys[312]

Gen. et sp. nov

Turvey et al.

Late Holocene

  Indonesia

A member of the family Muridae belonging to the subfamily Murinae and the tribe Rattini. The type species is M. juliae.

Montanacastor[286]

Gen. et sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

  United States
(  Montana)

A member of the family Castoridae. The type species is M. simplicidens.

Mubhammys atlanticus[313]

Sp. nov

Valid

Marivaux et al.

Oligocene (earliest Rupelian)

Upper Samlat Formation

Western Sahara

A member of Phiomorpha of uncertain phylogenetic placement.

Neocometes magna[314]

Sp. nov

Valid

Qiu & Jin

Probably Miocene

  China

A member of the family Platacanthomyidae.

Neocometes sinensis[314]

Sp. nov

Valid

Qiu & Jin

Probably Miocene

  China

A member of the family Platacanthomyidae.

Neophiomys minutus[313]

Sp. nov

Valid

Marivaux et al.

Oligocene (earliest Rupelian)

Upper Samlat Formation

Western Sahara

A member of Phiomorpha of uncertain phylogenetic placement.

Orelladjidaumo exiguus[286]

Sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

  United States
(  Montana)

A member of the family Eomyidae.

Palaeocavia? mawka[315]

Sp. nov

Valid

Madozzo-Jaén & Pérez

Late Miocene

Chiquimil Formation

  Argentina

A member of Caviinae, possibly a species of Palaeocavia.

Parapodemus badgleyae[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

Late Miocene

Nagri Formation

  Pakistan

A member of the family Muridae.

Phenacophiomys[313]

Gen. et sp. nov

Valid

Marivaux et al.

Oligocene (earliest Rupelian)

Upper Samlat Formation

Western Sahara

A member of the family Phiomyidae. The type species is P. occidentalis.

Plesiosminthus margaritae[316]

Sp. nov

Valid

Freudenthal & Martín-Suárez

Late Oligocene

  Spain

A member of the family Dipodidae.

Plesiosminthus moniqueae[316]

Sp. nov

Valid

Freudenthal & Martín-Suárez

Late Oligocene

  France

A member of the family Dipodidae.

Pliosiphneus antiquus[317]

Sp. nov

Valid

Zheng

Late Neogene

Gaozhuang Formation

  China

A zokor.

Pozomys[300]

Gen. et sp. nov

Valid

Boivin et al.

Late middle Eocene

Pozo Formation

  Peru

A member of Caviomorpha of uncertain phylogenetic placement. The type species is P. ucayaliensis.

Priusaulax wilsoni[318]

Sp. nov

Valid

Korth

Miocene (Hemingfordian)

Pawnee Creek Formation
Runningwater Formation

  United States
(  Colorado
  Nebraska
  Wyoming)

A member of the family Castoridae.

Progonomys morganae[310]

Sp. nov

Valid

Kimura, Flynn & Jacobs

Late Miocene

Nagri Formation

  India[298]
  Pakistan

A member of the family Muridae.

Proischyromys[319]

Gen. et sp. nov

Valid

Samuels & Korth

Eocene (Chadronian)

John Day Formation

  United States
(  Oregon)

A member of the family Ischyromyidae. The type species is P. perditus.

Raksasamys[312]

Gen. et sp. nov

Turvey et al.

Late Holocene

  Indonesia

A member of the family Muridae belonging to the subfamily Murinae and the tribe Rattini. The type species is R. tikusbesar.

Sayimys sihongensis[287]

Sp. nov

Valid

Qiu

Late Early Miocene

Xiacaowan Formation

  China

A gundi.

Sciuravus inclinatus[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

  United States
(  Wyoming)

A member of the family Sciuravidae.

Sciuravus metalinguas[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

  United States
(  Wyoming)

A member of the family Sciuravidae.

Sciuravus nexus[320]

Sp. nov

Valid

Anderson

Bridgerian

Bridger Formation

  United States
(  Wyoming)

A member of the family Sciuravidae.

Spalax denizliensis[321]

Sp. nov

Valid

Erten

Early Pleistocene

Tosunlar Formation

  Turkey

A species of Spalax.

Spurimus hoffmani[311]

Sp. nov

Valid

Korth & Tabrum

Possibly Chadronian

Beaverhead Basin

  United States
(  Montana)

A member of the family Ischyromyidae.

Tedfordomys[322]

Gen. et sp. nov

Valid

Wu, Flynn & Qiu

Late Miocene

Gaozhuang Formation
Mahui Formation

  China

A member of Murinae. The type species is T. jinensis.

Willeumys argosorus[286]

Sp. nov

Valid

Korth & Tabrum

Oligocene (Whitneyan)

  United States
(  Montana)

A member of the family Cricetidae belonging to the subfamily Eumyinae.

Yuneomys[287]

Gen. et comb. nov

Valid

Qiu

Late Miocene

Shihuiba Formation

  China

A member of the family Eomyidae; a new genus for "Leptodontomys" pusillus Qiu (2006).

Yuomys altunensis[323]

Sp. nov

Valid

Wang

Middle Eocene

Xishuigou Formation

  China

A relative of the gundis.

Yuomys magnus[324]

Sp. nov

Valid

Li

Eocene

  China

A relative of the gundis.

Primates

edit
Name Novelty Status Authors Age Unit Location Notes Images

Agerinia marandati[325]

Sp. nov

Valid

Femenias-Gual et al.

Early Eocene

Corçà Formation

  Spain

Kalepithecus kogolensis[326]

Sp. nov

Valid

Pickford et al.

Miocene

  Uganda

A small ape.

Masradapis[327]

Gen. et sp. nov

Valid

Seiffert et al.

Late Eocene

Birket Qarun Formation

  Egypt

A member of Adapiformes belonging to the subfamily Caenopithecinae. The type species is M. tahai.

Microchoerus hookeri[328]

Sp. nov

Valid

Minwer-Barakat et al.

Late Eocene

  Spain

A member of Omomyidae.

Mioeuoticus kichotoi[329]

Sp. nov

Valid

Kunimatsu et al.

Early Middle Miocene

Aka Aiteputh Formation

  Kenya

A member of the family Lorisidae.

Nyanzapithecus alesi[330]

Sp. nov

Valid

Nengo et al.

Middle Miocene

  Kenya

An ape.

Ramadapis[331]

Gen. et sp. nov

Valid

Gilbert et al.

Miocene

  India

A member of Sivaladapidae. The type species is R. sahnii.

Other eutherians

edit
Name Novelty Status Authors Age Unit Location Notes Images

Bharatlestes[332][333]

Gen. et sp. nov

Valid

Kapur et al.

Early Eocene

Cambay Shale Formation

  India

A member of the family Adapisoriculidae. Genus includes new species B. kalamensis.

Carpolestes twelvemilensis[334]

Sp. nov

Valid

Mattingly, Sanisidro & Beard

Paleocene (late Tiffanian)

  United States
(  Wyoming)

A member of Plesiadapiformes.

Crustulus[335]

Gen. et sp. nov

Valid

Clemens

Paleocene (latest Puercan)

Tullock Member of the Fort Union Formation

  United States
(  Montana)

Probably a member of Pantodonta. The type species is C. fontanus.

Deinogalerix samniticus[336]

Sp. nov

Valid

Savorelli et al.

Miocene (Tortonian)

Lithothamnion Limestone

  Italy

A gymnure.

Durlstodon[337]

Gen. et sp. nov

Valid

Sweetman, Smith & Martill

Early Cretaceous (Berriasian)

Purbeck Group

  United Kingdom

An early eutherian of uncertain phylogenetic placement. The type species is D. ensomi.

 
Durlstotherium (A), Durlstodon (B)

Durlstotherium[337]

Gen. et sp. nov

Valid

Sweetman, Smith & Martill

Early Cretaceous (Berriasian)

Purbeck Group

  United Kingdom

An early eutherian of uncertain phylogenetic placement. The type species is D. newmani.

Entomolestes westgatei[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

  United States
(  Wyoming)

A member of the family Erinaceidae.

Exiguodon[338]

Gen. et comb. nov

Valid

Morales & Pickford

Early Miocene

  Kenya
  Uganda

A member of Hyaenodonta belonging to the group Hyainailourinae. The type species is "Hyaenodon" pilgrimi Savage (1965).

Falcatodon[338]

Gen. et comb. nov

Valid

Morales & Pickford

Oligocene (Rupelian)

Jebel Qatrani Formation

  Egypt

A member of Hyaenodonta belonging to the group Hyainailourinae. The type species is "Metapterodon" schlosseri Holroyd (1999).

 

Hapalodectes lopatini[339]

Sp. nov

Valid

Solé et al.

Middle Paleocene

Upper Doumu Formation

  China

A hapalodectid mesonychian.

Masrasector nananubis[340]

Sp. nov

Valid

Borths & Seiffert

Eocene (latest Priabonian)

Jebel Qatrani Formation

  Egypt

A member of Hyaenodonta belonging to the group Hyainailouroidea and the subfamily Teratodontinae.

Notiolofos regueroi[341]

Sp. nov

Valid

Gelfo, López & Santillana

Eocene (Ypresian)

La Meseta Formation

  Antarctica

A member of Litopterna belonging to the family Sparnotheriodontidae.

Nyctitherium gunnelli[243]

Sp. nov

Valid

Murphey & Kelly

Uintan

Bridger Formation

  United States
(  Wyoming)

A member of Soricomorpha belonging to the family Nyctitheriidae.

Pakakali[342]

Gen. et sp. nov

Valid

Borths & Stevens

Late Oligocene

Nsungwe Formation

  Tanzania

A member of Hyaenodonta belonging to the group Hyainailouroidea. The type species is P. rukwaensis.

Pampahippus powelli[343]

Sp. nov

Valid

García-López, Deraco & del Papa

Eocene

Quebrada de los Colorados Formation

  Argentina

A notoungulate.

Percymygale[344]

Gen. et comb. nov

Valid

Hugueney & Maridet

Late Eocene to early Miocene

  Czech Republic
  France
  Germany
  United Kingdom

A member of Talpidae belonging to the tribe Urotrichini. The type species is "Myxomygale" minor Ziegler (1990); genus also includes "Myxomygale" vauclusensis Crochet (1995).

Plesiodimylus ilercavonicus[345]

Sp. nov

Valid

Crespo et al.

Early Miocene

  Spain

A member of Dimylidae.

Plesiosorex fejfari[346]

Sp. nov

Valid

Oshima, Tomida & Orihara

Early Miocene

Nakamura Formation

  Japan

A member of Eulipotyphla belonging to the family Plesiosoricidae.

Protypotherium colloncurensis[347]

Sp. nov

Valid

Nardoni, Reguero & González Ruiz

Miocene (Colloncuran)

Collón Cura Formation

  Argentina

An interatheriid notoungulate.

Sectisodon[338]

Gen. et sp. et comb. nov

Valid

Morales & Pickford

Oligocene and Early Miocene

  Egypt
  Uganda

A member of Hyaenodonta belonging to the group Hyainailourinae. The type species is S. occultus; genus also includes "Metapterodon" markgrafi Holroyd (1999).

Taizimylus[348]

Gen. et sp. nov

Valid

Mao et al.

Late Paleocene

  China

A stem-rodent belonging to the family Eurymylidae. The type species is T. tongi.

Tegulariscaptor[349]

Gen. et comb. nov

Valid

Sansalone et al.

Early Oligocene

  Germany

A member of Talpidae; a new genus for "Geotrypus" minor Ziegler (2012).

Xotodon maimarensis[350]

Sp. nov

Valid

Bonini et al.

Late Miocene–early Pliocene

Maimará Formation

  Argentina

A toxodontid notoungulate.

Yanshuella yushensis[351]

Sp. nov

Valid

Flynn & Wu

Late Neogene

Yushe Basin

  China

A mole belonging to the tribe Scalopini.

Other mammals

edit

Research

edit

New taxa

edit
Name Novelty Status Authors Age Unit Location Notes Images

Arboroharamiya allinhopsoni[363]

Sp. nov

Valid

Han et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

  China

A member of Euharamiyida belonging to the family Arboroharamiyidae.

Baidabatyr[364]

Gen. et sp. nov

Valid

Averianov et al.

Early Cretaceous

Ilek Formation

  Russia

A multituberculate of uncertain phylogenetic placement. The type species is B. clivosus.

Fluctuodon[365]

Gen. et sp. nov

Valid

Debuysschere

Late Triassic (Rhaetian)

  France

A member of Kuehneotheriidae. The type species is F. necmergor.

Kuehneotherium stanislavi[365]

Sp. nov

Valid

Debuysschere

Late Triassic (Rhaetian)

  France
  Luxembourg

A member of Kuehneotheriidae.

Maiopatagium[366]

Gen. et sp. nov

Valid

Meng et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

  China

A member of Haramiyida belonging to the group Eleutherodontida. The type species is M. furculiferum.

 

Vilevolodon[367]

Gen. et sp. nov

Valid

Luo et al.

Late Jurassic (Oxfordian)

Tiaojishan Formation

  China

A member of Haramiyida belonging to the family Eleutherodontidae. The type species is V. diplomylos.

 

References

edit
  1. ^ Leonardo M. Carneiro; Édison Vicente de Oliveira (2017). "Systematic affinities of the extinct metatherian Eobrasilia coutoi Simpson, 1947, a South American Early Eocene Stagodontidae: implications for "Eobrasiliinae"". Revista Brasileira de Paleontologia. 20 (3): 355–372. doi:10.4072/rbp.2017.3.07.
  2. ^ Charlène Selva; Sandrine Ladevèze (2017). "Computed microtomography investigation of the skull of Cuvier's famous 'opossum' (Marsupialiformes, Herpetotheriidae) from the Eocene of Montmartre". Zoological Journal of the Linnean Society. 180 (3): 672–693. doi:10.1111/zoj.12495.
  3. ^ Leonardo M. Carneiro; Édison Vicente Oliveira (2017). "The Eocene South American metatherian Zeusdelphys complicatus is not a protodidelphidid but a hatcheriform: Paleobiogeographic implications". Acta Palaeontologica Polonica. 62 (3): 497–507. doi:10.4202/app.00351.2017.
  4. ^ Robin M. D. Beck (2017). "The Skull of Epidolops ameghinoi from the Early Eocene Itaboraí Fauna, Southeastern Brazil, and the Affinities of the Extinct Marsupialiform Order Polydolopimorphia". Journal of Mammalian Evolution. 24 (4): 373–414. doi:10.1007/s10914-016-9357-6. PMC 5684316. PMID 29187780.
  5. ^ Camilo López-Aguirre; Michael Archer; Suzanne J. Hand; Shawn W. Laffan (2017). "Extinction of South American sparassodontans (Metatheria): environmental fluctuations or complex ecological processes?". Palaeontology. 60 (1): 91–115. Bibcode:2017Palgy..60...91L. doi:10.1111/pala.12272. S2CID 132584097.
  6. ^ Michael C. Westaway; Jon Olley; Rainer Grün (2017). "At least 17,000 years of coexistence: Modern humans and megafauna at the Willandra Lakes, South-Eastern Australia". Quaternary Science Reviews. 157: 206–211. Bibcode:2017QSRv..157..206W. doi:10.1016/j.quascirev.2016.11.031.
  7. ^ Sander van der Kaars; Gifford H. Miller; Chris S. M. Turney; Ellyn J. Cook; Dirk Nürnberg; Joachim Schönfeld; A. Peter Kershaw; Scott J. Lehman (2017). "Humans rather than climate the primary cause of Pleistocene megafaunal extinction in Australia". Nature Communications. 8: Article number 14142. Bibcode:2017NatCo...814142V. doi:10.1038/ncomms14142. PMC 5263868. PMID 28106043.
  8. ^ Larisa R. G. DeSantis; Judith H. Field; Stephen Wroe; John R. Dodson (2017). "Dietary responses of Sahul (Pleistocene Australia–New Guinea) megafauna to climate and environmental change". Paleobiology. 43 (2): 181–195. Bibcode:2017Pbio...43..181D. doi:10.1017/pab.2016.50. S2CID 13134989.
  9. ^ Gilbert J. Price; Kyle J. Ferguson; Gregory E. Webb; Yue-xing Feng; Pennilyn Higgins; Ai Duc Nguyen; Jian-xin Zhao; Renaud Joannes-Boyau; Julien Louys (2017). "Seasonal migration of marsupial megafauna in Pleistocene Sahul (Australia–New Guinea)". Proceedings of the Royal Society B: Biological Sciences. 284 (1863): 20170785. doi:10.1098/rspb.2017.0785. PMC 5627191. PMID 28954903.
  10. ^ Kaylene Butler; Kenny J. Travouillon; Gilbert J. Price; Michael Archer; Suzanne J. Hand (2017). "Species abundance, richness and body size evolution of kangaroos (Marsupialia: Macropodiformes) throughout the Oligo-Miocene of Australia". Palaeogeography, Palaeoclimatology, Palaeoecology. 487: 25–36. Bibcode:2017PPP...487...25B. doi:10.1016/j.palaeo.2017.08.016.
  11. ^ Michael Buckley; Richard Cosgrove; Jillian Garvey; Gavin J. Prideaux (2017). "Identifying remains of extinct kangaroos in Late Pleistocene deposits using collagen fingerprinting". Journal of Quaternary Science. 32 (5): 653–660. Bibcode:2017JQS....32..653B. doi:10.1002/jqs.2964.
  12. ^ Troy J. Myers; Karen H. Black; Michael Archer; Suzanne J. Hand (2017). "The identification of Oligo-Miocene mammalian palaeocommunities from the Riversleigh World Heritage Area, Australia and an appraisal of palaeoecological techniques". PeerJ. 5: e3511. doi:10.7717/peerj.3511. PMC 5494167. PMID 28674663.
  13. ^ A. Murat Maga; Robin M. D. Beck (2017). "Skeleton of an unusual, cat-sized marsupial relative (Metatheria: Marsupialiformes) from the middle Eocene (Lutetian: 44-43 million years ago) of Turkey". PLOS ONE. 12 (8): e0181712. Bibcode:2017PLoSO..1281712M. doi:10.1371/journal.pone.0181712. PMC 5559079. PMID 28813431.
  14. ^ Pippa Binfield; Michael Archer; Suzanne J. Hand; Karen H. Black; Troy J. Myers; Anna K. Gillespie & Derrick A. Arena (2017). "A new Miocene carnivorous marsupial, Barinya kutjamarpensis (Dasyuromorphia), from central Australia". Alcheringa: An Australasian Journal of Palaeontology. 41 (1): 46–53. Bibcode:2017Alch...41...46B. doi:10.1080/03115518.2016.1180029. S2CID 133283494.
  15. ^ a b Kenny J. Travouillon; Julien Louys; Gilbert J. Price; Michael Archer; Suzanne J. Hand; Jeanette Muirhead (2017). "A review of the Pliocene bandicoots of Australia, and descriptions of new genus and species". Journal of Vertebrate Paleontology. 37 (5): e1360894. Bibcode:2017JVPal..37E0894T. doi:10.1080/02724634.2017.1360894. S2CID 90107606.
  16. ^ Anna K. Gillespie; Michael Archer; Suzanne J. Hand (2017). "A new Oligo–Miocene marsupial lion from Australia and revision of the family Thylacoleonidae". Journal of Systematic Palaeontology. 17 (1): 59–89. doi:10.1080/14772019.2017.1391885. S2CID 90758394.
  17. ^ Liang Liu; Jin Zhang; Frank E. Rheindt; Fumin Lei; Yanhua Qu; Yu Wang; Yu Zhang; Corwin Sullivan; Wenhui Nie; Jinhuan Wang; Fengtang Yang; Jinping Chen; Scott V. Edwards; Jin Meng; Shaoyuan Wu (2017). "Genomic evidence reveals a radiation of placental mammals uninterrupted by the KPg boundary". Proceedings of the National Academy of Sciences of the United States of America. 114 (35): E7282–E7290. Bibcode:2017PNAS..114E7282L. doi:10.1073/pnas.1616744114. PMC 5584403. PMID 28808022.
  18. ^ John Gatesy; Mark S. Springer (2017). "Phylogenomic red flags: Homology errors and zombie lineages in the evolutionary diversification of placental mammals". Proceedings of the National Academy of Sciences of the United States of America. 114 (45): E9431–E9432. Bibcode:2017PNAS..114E9431G. doi:10.1073/pnas.1715318114. PMC 5692601. PMID 29078405.
  19. ^ Liang Liu; Jin Zhang; Frank E. Rheindt; Fumin Lei; Yanhua Qu; Yu Wang; Yu Zhang; Corwin Sullivan; Wenhui Nie; Jinhuan Wang; Fengtang Yang; Jinping Chen; Scott V. Edwards; Jin Meng; Shaoyuan Wu (2017). "Reply to Gatesy and Springer: Claims of homology errors and zombie lineages do not compromise the dating of placental diversification". Proceedings of the National Academy of Sciences of the United States of America. 114 (45): E9433–E9434. Bibcode:2017PNAS..114E9433L. doi:10.1073/pnas.1715371114. PMC 5692603. PMID 29078408.
  20. ^ Thomas W. Davies; Mark A. Bell; Anjali Goswami; Thomas J. D. Halliday (2017). "Completeness of the eutherian mammal fossil record and implications for reconstructing mammal evolution through the Cretaceous/Paleogene mass extinction". Paleobiology. 43 (4): 521–536. Bibcode:2017Pbio...43..521D. doi:10.1017/pab.2017.20. S2CID 89732700.
  21. ^ A. V. Lopatin; A. O. Averianov (2017). "The stem placental mammal Prokennalestes from the Early Cretaceous of Mongolia". Paleontological Journal. 51 (12): 1293–1374. Bibcode:2017PalJ...51.1293L. doi:10.1134/S0031030117120048. S2CID 90148237.
  22. ^ Indrė Žliobaitė; Mikael Fortelius; Nils C. Stenseth (2017). "Reconciling taxon senescence with the Red Queen's hypothesis". Nature. 552 (7683): 92–95. Bibcode:2017Natur.552...92Z. doi:10.1038/nature24656. hdl:10852/65201. PMID 29186124. S2CID 4458011.
  23. ^ Xinru Wan; Zhibin Zhang (2017). "Climate warming and humans played different roles in triggering Late Quaternary extinctions in east and west Eurasia". Proceedings of the Royal Society B: Biological Sciences. 284 (1851): 20162438. doi:10.1098/rspb.2016.2438. PMC 5378077. PMID 28330916.
  24. ^ Thomas J. D. Halliday; Paul Upchurch; Anjali Goswami (2017). "Resolving the relationships of Paleocene placental mammals". Biological Reviews. 92 (1): 521–550. doi:10.1111/brv.12242. PMC 6849585. PMID 28075073.
  25. ^ Abigail R. D'Ambrosia; William C. Clyde; Henry C. Fricke; Philip D. Gingerich; Hemmo A. Abels (2017). "Repetitive mammalian dwarfing during ancient greenhouse warming events". Science Advances. 3 (3): e1601430. Bibcode:2017SciA....3E1430D. doi:10.1126/sciadv.1601430. PMC 5351980. PMID 28345031.
  26. ^ Meaghan M. Emery-Wetherell; Brianna K. McHorse; Edward Byrd Davis (2017). "Spatially explicit analysis sheds new light on the Pleistocene megafaunal extinction in North America". Paleobiology. 43 (4): 642–655. Bibcode:2017Pbio...43..642E. doi:10.1017/pab.2017.15. S2CID 90330072.
  27. ^ Iris Menéndez; Ana R. Gómez Cano; Blanca A. García Yelo; Laura Domingo; M. Soledad Domingo; Juan L. Cantalapiedra; Fernando Blanco; Manuel Hernández Fernández (2017). "Body-size structure of Central Iberian mammal fauna reveals semidesertic conditions during the middle Miocene Global Cooling Event". PLOS ONE. 12 (10): e0186762. Bibcode:2017PLoSO..1286762M. doi:10.1371/journal.pone.0186762. PMC 5658084. PMID 29073193.
  28. ^ Karina Vanesa Chichkoyan; Borja Figueirido; Margarita Belinchón; José Luis Lanata; Anne-Marie Moigne; Bienvenido Martínez-Navarro (2017). "Direct evidence of megamammal-carnivore interaction decoded from bone marks in historical fossil collections from the Pampean region". PeerJ. 5: e3117. doi:10.7717/peerj.3117. PMC 5426367. PMID 28503369.
  29. ^ Timothy J. Gaudin; Lauren M. Lyon (2017). "Cranial osteology of the pampathere Holmesina floridanus (Xenarthra: Cingulata; Blancan NALMA), including a description of an isolated petrosal bone". PeerJ. 5: e4022. doi:10.7717/peerj.4022. PMC 5729832. PMID 29250462.
  30. ^ Hervé Bocherens; Martin Cotte; Ricardo A. Bonini; Pablo Straccia; Daniel Scian; Leopoldo Soibelzon; Francisco J. Prevosti (2017). "Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina". Gondwana Research. 48: 7–14. Bibcode:2017GondR..48....7B. doi:10.1016/j.gr.2017.04.003. hdl:11336/56592.
  31. ^ Richard A. Fariña; Luciano Varela (2018). "Comment on "Isotopic insight on paleodiet of extinct Pleistocene megafaunal Xenarthrans from Argentina" by H. Bocherens, M. Cotte, R. A. Bonini, P. Straccia, D. Scian, L. Soibelzon and F. J. Prevosti, Gondwana Research, Volume 48, Issue 1, Pages 7–14". Gondwana Research. 58: 241–242. Bibcode:2018GondR..58..241F. doi:10.1016/j.gr.2018.03.004. S2CID 243901331.
  32. ^ Hervé Bocherens; Martin Cotte; Ricardo A. Bonini; Pablo Straccia; Daniel Scian; Leopoldo Soibelzon; Francisco J. Prevosti (2018). "Reply to "Comment on "Isotopic insight on paleodiet of ..." by Bocherens et al. (Gondwana Research, 48(1), 7–14)"". Gondwana Research. 58: 243–245. Bibcode:2018GondR..58..243B. doi:10.1016/j.gr.2018.03.003. hdl:11336/90839. S2CID 133659651.
  33. ^ Eli Amson; Christian de Muizon; Timothy J. Gaudin (2017). "A reappraisal of the phylogeny of the Megatheria (Mammalia: Tardigrada), with an emphasis on the relationships of the Thalassocninae, the marine sloths". Zoological Journal of the Linnean Society. 179 (1): 217–236. doi:10.1111/zoj.12450.
  34. ^ Gerardo De Iuliis; Cástor Cartelle; H. Gregory McDonald; François Pujos (2017). "The mylodontine ground sloth Glossotherium tropicorum from the late Pleistocene of Ecuador and Peru". Papers in Palaeontology. 3 (4): 613–636. Bibcode:2017PPal....3..613D. doi:10.1002/spp2.1088. hdl:11336/64132. S2CID 135080382.
  35. ^ Joseph J. El Adli; Daniel C. Fisher; Michael D. Cherney; Rafael Labarca; Frédéric Lacombat (2017). "First analysis of life history and season of death of a South American gomphothere". Quaternary International. 443, Part A: 180–188. Bibcode:2017QuInt.443..180E. doi:10.1016/j.quaint.2017.03.016.
  36. ^ Xiang-Wen Yang; Yu Li; Shi-Qi Wang (2017). "Cranial and dental material of Gomphotherium wimani (Gomphotheriidae, Proboscidea) from the Middle Miocene of the Linxia Basin, northwestern China". Vertebrata PalAsiatica. 55 (4): 331–346. doi:10.19615/j.cnki.1000-3118.170511.
  37. ^ Hanwen Zhang; Yuan Wang; Christine M. Janis; Robert H. Goodall; Mark A. Purnell (2017). "An examination of feeding ecology in Pleistocene proboscideans from southern China (Sinomastodon, Stegodon, Elephas), by means of dental microwear texture analysis". Quaternary International. 445: 60–70. Bibcode:2017QuInt.445...60Z. doi:10.1016/j.quaint.2016.07.011. hdl:1983/4f6a743a-7b6d-47c8-a56a-fee7e2c515df.
  38. ^ Yuan Wang; Lingxia Zhao; Baopu Du; Lizhao Zhang; Xinjin Wang; Huiyang Cai (2017). "New proboscidean remains associated with Homo sapiens from the Mawokou Cave in Bijie, Guizhou Province of south-western China" (PDF). Acta Anthropologica Sinica. 36 (3): 414–425. doi:10.16359/j.cnki.cn11-1963/q.2017.0045.
  39. ^ Chris Widga; Stacey N. Lengyel; Jeffrey Saunders; Gregory Hodgins; J. Douglas Walker; Alan D. Wanamaker (2017). "Late Pleistocene proboscidean population dynamics in the North American Midcontinent". Boreas. 46 (4): 772–782. Bibcode:2017Borea..46..772W. doi:10.1111/bor.12235.
  40. ^ Jeremy L. Green; Larisa R.G. DeSantis; Gregory James Smith (2017). "Regional variation in the browsing diet of Pleistocene Mammut americanum (Mammalia, Proboscidea) as recorded by dental microwear textures". Palaeogeography, Palaeoclimatology, Palaeoecology. 487: 59–70. Bibcode:2017PPP...487...59G. doi:10.1016/j.palaeo.2017.08.019.
  41. ^ Matthias Meyer; Eleftheria Palkopoulou; Sina Baleka; Mathias Stiller; Kirsty E. H. Penkman; Kurt W. Alt; Yasuko Ishida; Dietrich Mania; Swapan Mallick; Tom Meijer; Harald Meller; Sarah Nagel; Birgit Nickel; Sven Ostritz; Nadin Rohland; Karol Schauer; Tim Schüler; Alfred L. Roca; David Reich; Beth Shapiro; Michael Hofreiter (2017). "Palaeogenomes of Eurasian straight-tusked elephants challenge the current view of elephant evolution". eLife. 6: e25413. doi:10.7554/eLife.25413. PMC 5461109. PMID 28585920.
  42. ^ Rebekah L. Rogers; Montgomery Slatkin (2017). "Excess of genomic defects in a woolly mammoth on Wrangel island". PLOS Genetics. 13 (3): e1006601. doi:10.1371/journal.pgen.1006601. PMC 5333797. PMID 28253255.
  43. ^ Dan Chang; Michael Knapp; Jacob Enk; Sebastian Lippold; Martin Kircher; Adrian Lister; Ross D. E. MacPhee; Christopher Widga; Paul Czechowski; Robert Sommer; Emily Hodges; Nikolaus Stümpel; Ian Barnes; Love Dalén; Anatoly Derevianko; Mietje Germonpré; Alexandra Hillebrand-Voiculescu; Silviu Constantin; Tatyana Kuznetsova; Dick Mol; Thomas Rathgeber; Wilfried Rosendahl; Alexey N. Tikhonov; Eske Willerslev; Greg Hannon; Carles Lalueza-Fox; Ulrich Joger; Hendrik Poinar; Michael Hofreiter; Beth Shapiro (2017). "The evolutionary and phylogeographic history of woolly mammoths: a comprehensive mitogenomic analysis". Scientific Reports. 7: Article number 44585. Bibcode:2017NatSR...744585C. doi:10.1038/srep44585. PMC 5361112. PMID 28327635.
  44. ^ Patrícia Pečnerová; David Díez-del-Molino; Nicolas Dussex; Tatiana Feuerborn; Johanna von Seth; Johannes van der Plicht; Pavel Nikolskiy; Alexei Tikhonov; Sergey Vartanyan; Love Dalén (2017). "Genome-based sexing provides clues about behavior and social structure in the woolly mammoth". Current Biology. 27 (22): 3505–3510.e3. Bibcode:2017CBio...27E3505P. doi:10.1016/j.cub.2017.09.064. PMID 29103934. S2CID 6913386.
  45. ^ James A. Fellows Yates; Dorothée G. Drucker; Ella Reiter; Simon Heumos; Frido Welker; Susanne C. Münzel; Piotr Wojtal; Martina Lázničková-Galetová; Nicholas J. Conard; Alexander Herbig; Hervé Bocherens; Johannes Krause (2017). "Central European woolly mammoth population dynamics: insights from Late Pleistocene mitochondrial genomes". Scientific Reports. 7 (1): Article number 17714. Bibcode:2017NatSR...717714F. doi:10.1038/s41598-017-17723-1. PMC 5735091. PMID 29255197.
  46. ^ Kumiko Matsui; Katsuo Sashida; Sachiko Agematsu; Naoki Kohno (2017). "Habitat preferences of the enigmatic Miocene tethythere Desmostylus and Paleoparadoxia (Desmostylia; Mammalia) inferred from the depositional depth of fossil occurrences in the Northwestern Pacific realm". Palaeogeography, Palaeoclimatology, Palaeoecology. 471: 254–265. Bibcode:2017PPP...471..254M. doi:10.1016/j.palaeo.2017.02.005.
  47. ^ Kumiko Matsui (2017). "How can we reliably identify a taxon based on humeral morphology? Comparative morphology of desmostylian humeri". PeerJ. 5: e4011. doi:10.7717/peerj.4011. PMC 5683048. PMID 29134151.
  48. ^ Esperanza Cerdeño; Bárbara Vera (2017). "New anatomical data on Pyrotherium (Pyrotheriidae) from the late Oligocene of Mendoza, Argentina". Ameghiniana. 54 (3): 290–306. doi:10.5710/AMGH.14.11.2016.3052. hdl:11336/63606. S2CID 130439323.
  49. ^ J. Angel Soto-Centeno; Nancy B. Simmons; David W. Steadman (2017). "The bat community of Haiti and evidence for its long-term persistence at high elevations". PLOS ONE. 12 (6): e0178066. Bibcode:2017PLoSO..1278066S. doi:10.1371/journal.pone.0178066. PMC 5456054. PMID 28574990.
  50. ^ Shan Huang; Jussi T. Eronen; Christine M. Janis; Juha J. Saarinen; Daniele Silvestro; Susanne A. Fritz (2017). "Mammal body size evolution in North America and Europe over 20 Myr: similar trends generated by different processes". Proceedings of the Royal Society B: Biological Sciences. 284 (1849): 20162361. doi:10.1098/rspb.2016.2361. PMC 5326526. PMID 28202809.
  51. ^ Alejandro G. Kramarz; Mariano Bond; Guillermo W. Rougier (2017). "Re-Description of the Auditory Region of the Putative Basal Astrapothere (Mammalia) Eoastrapostylops riolorense Soria and Powell, 1981. Systematic and Phylogenetic Considerations". Annals of Carnegie Museum. 84 (2): 95–164. doi:10.2992/007.084.0204. hdl:11336/47823. S2CID 90493504.
  52. ^ Lílian Paglarelli Bergqvist; Wighart von Koenigswald (2017). "The dentition of Carodnia vieirai (Mammalia: Xenungulata): enamel microstructure and mastication pattern". Palaeontologia Electronica. 20 (2): Article number 20.2.30A. doi:10.26879/703.
  53. ^ Pablo Javier Gaudioso; Germán M. Gasparini; Rafael Herbst; Rubén Mario Barquez (2017). "First record of the Neolicaphrium recens Frenguelli, 1921 (Mammalia, Litopterna) in the Pleistocene of Santiago del Estero Province, Argentina". Papéis Avulsos de Zoologia. 57 (3): 23–29. doi:10.11606/0031-1049.2017.57.03. hdl:11336/56638.
  54. ^ Michael Westbury; Sina Baleka; Axel Barlow; Stefanie Hartmann; Johanna L.A. Paijmans; Alejandro Kramarz; Analía M Forasiepi; Mariano Bond; Javier N. Gelfo; Marcelo A. Reguero; Patricio López-Mendoza; Matias Taglioretti; Fernando Scaglia; Andrés Rinderknecht; Washington Jones; Francisco Mena; Guillaume Billet; Christian de Muizon; José Luis Aguilar; Ross D.E. MacPhee; Michael Hofreiter (2017). "A mitogenomic timetree for Darwin's enigmatic South American mammal Macrauchenia patachonica". Nature Communications. 8: Article number 15951. Bibcode:2017NatCo...815951W. doi:10.1038/ncomms15951. PMC 5490259. PMID 28654082.
  55. ^ Helder Gomes Rodrigues; Anthony Herrel; Guillaume Billet (2017). "Ontogenetic and life history trait changes associated with convergent ecological specializations in extinct ungulate mammals". Proceedings of the National Academy of Sciences of the United States of America. 114 (5): 1069–1074. Bibcode:2017PNAS..114.1069G. doi:10.1073/pnas.1614029114. PMC 5293108. PMID 28096389.
  56. ^ Bárbara Vera (2017). "Patagonian Eocene Archaeopithecidae Ameghino, 1897 (Notoungulata): systematic revision, phylogeny and biostratigraphy". Journal of Paleontology. 91 (6): 1272–1295. Bibcode:2017JPal...91.1272V. doi:10.1017/jpa.2017.53. hdl:11336/57318. S2CID 90422549.
  57. ^ Federico D. Seoane; Sergio Roig Juñent; Esperanza Cerdeño (2017). "Phylogeny and paleobiogeography of Hegetotheriidae (Mammalia, Notoungulata)". Journal of Vertebrate Paleontology. 37 (1): e1278547. Bibcode:2017JVPal..37E8547S. doi:10.1080/02724634.2017.1278547. hdl:11336/45231. S2CID 90855244.
  58. ^ Alejandro Gustavo Kramarz; Mariano Bond (2017). "Systematics and stratigraphical range of the hegetotheriids Hegetotheriopsis sulcatus and Prohegetotherium sculptum (Mammalia: Notoungulata)". Journal of Systematic Palaeontology. 15 (12): 1027–1036. Bibcode:2017JSPal..15.1027K. doi:10.1080/14772019.2016.1266047. hdl:11336/46835. S2CID 90853697.
  59. ^ Juan D. Carrillo; Robert J. Asher (2017). "An exceptionally well-preserved skeleton of Thomashuxleya externa (Mammalia, Notoungulata), from the Eocene of Patagonia, Argentina". Palaeontologia Electronica. 20 (2): Article number 20.2.34A. doi:10.26879/759.
  60. ^ Helder Gomes Rodrigues; Rémi Lefebvre; Marcos Fernández-Monescillo; Bernardino Mamani Quispe; Guillaume Billet (2017). "Ontogenetic variations and structural adjustments in mammals evolving prolonged to continuous dental growth". Royal Society Open Science. 4 (7): 170494. Bibcode:2017RSOS....470494G. doi:10.1098/rsos.170494. PMC 5541567. PMID 28791172.
  61. ^ Davis Brent Jones; Larisa R.G. DeSantis (2017). "Dietary ecology of ungulates from the La Brea tar pits in southern California: A multi-proxy approach". Palaeogeography, Palaeoclimatology, Palaeoecology. 466: 110–127. Bibcode:2017PPP...466..110J. doi:10.1016/j.palaeo.2016.11.019.
  62. ^ Bin Bai; Jin Meng; Yuan-Qing Wang; Hai-Bing Wang; Luke Holbrook (2017). "Osteology of the Middle Eocene ceratomorph Hyrachyus modestus (Mammalia, Perissodactyla)". Bulletin of the American Museum of Natural History. 413: 1–70. doi:10.1206/0003-0090-413.1.1. hdl:2246/6718. S2CID 89946672.
  63. ^ Bin Bai; Yuan-Qing Wang; Fang-Yuan Mao; Jin Meng (2017). "New material of Eocene Helaletidae (Perissodactyla, Tapiroidea) from the Irdin Manha Formation of the Erlian Basin, Inner Mongolia, China and comments on related localities of the Huheboerhe area". American Museum Novitates (3878): 1–44. doi:10.1206/3878.1. hdl:2246/6709. S2CID 55194553.
  64. ^ Frido Welker; Geoff M. Smith; Jarod M. Hutson; Lutz Kindler; Alejandro Garcia-Moreno; Aritza Villaluenga; Elaine Turner; Sabine Gaudzinski-Windheuser (2017). "Middle Pleistocene protein sequences from the rhinoceros genus Stephanorhinus and the phylogeny of extant and extinct Middle/Late Pleistocene Rhinocerotidae". PeerJ. 5: e3033. doi:10.7717/peerj.3033. PMC 5354071. PMID 28316883.
  65. ^ Irina V. Kirillova; Olga F. Chernova; Jan van der Made; Vladimir V. Kukarskih; Beth Shapiro; Johannes van der Plicht; Fedor K. Shidlovskiy; Peter D. Heintzman; Thijs van Kolfschoten; Oksana G. Zanina (2017). "Discovery of the skull of Stephanorhinus kirchbergensis (Jäger, 1839) above the Arctic Circle" (PDF). Quaternary Research. 88 (3): 537–550. Bibcode:2017QuRes..88..537K. doi:10.1017/qua.2017.53. S2CID 45478220.
  66. ^ Alexandra A.E. van der Geer; Frietson Galis (2017). "High incidence of cervical ribs indicates vulnerable condition in Late Pleistocene woolly rhinoceroses". PeerJ. 5: e3684. doi:10.7717/peerj.3684. PMC 5580387. PMID 28875067.
  67. ^ Jens Lorenz Franzen; Jörg Habersetzer (2017). "Complete skeleton of Eurohippus messelensis (Mammalia, Perissodactyla, Equoidea) from the early middle Eocene of Grube Messel (Germany)". Palaeobiodiversity and Palaeoenvironments. 97 (4): 807–832. Bibcode:2017PdPe...97..807F. doi:10.1007/s12549-017-0280-5. S2CID 135363952.
  68. ^ J. L. Cantalapiedra; J. L. Prado; M. Hernández Fernández; M. T. Alberdi (2017). "Decoupled ecomorphological evolution and diversification in Neogene-Quaternary horses". Science. 355 (6325): 627–630. Bibcode:2017Sci...355..627C. doi:10.1126/science.aag1772. PMID 28183978. S2CID 206651032.
  69. ^ Brianna K. McHorse; Andrew A. Biewener; Stephanie E. Pierce (2017). "Mechanics of evolutionary digit reduction in fossil horses (Equidae)". Proceedings of the Royal Society B: Biological Sciences. 284 (1861): 20171174. doi:10.1098/rspb.2017.1174. PMC 5577487. PMID 28835559.
  70. ^ Yangfan Li; Tao Deng; Hong Hua; Yongxiang Li; Yunxiang Zhang (2017). "Assessment of dental ontogeny in late Miocene hipparionines from the Lamagou fauna of Fugu, Shaanxi Province, China". PLOS ONE. 12 (4): e0175460. Bibcode:2017PLoSO..1275460L. doi:10.1371/journal.pone.0175460. PMC 5405952. PMID 28445536.
  71. ^ Víctor Adrián Pérez-Crespo; Oscar Carranza-Castañeda; Joaquín Arroyo-Cabrales; Pedro Morales-Puente; Edith Cienfuegos-Alvarado; Francisco J. Otero (2017). "Diet and habitat of unique individuals of Dinohippus mexicanus and Neohipparion eurystyle (Equidae) from the late Hemphillian (Hh3) of Guanajuato and Jalisco, central Mexico: stable isotope studies" (PDF). Revista Mexicana de Ciencias Geológicas. 34 (1): 38–44. doi:10.22201/cgeo.20072902e.2017.1.470. Archived from the original (PDF) on 2017-04-07. Retrieved 2017-05-03.
  72. ^ Christina I. Barrón-Ortiz; Antonia T. Rodrigues; Jessica M. Theodor; Brian P. Kooyman; Dongya Y. Yang; Camilla F. Speller (2017). "Cheek tooth morphology and ancient mitochondrial DNA of late Pleistocene horses from the western interior of North America: Implications for the taxonomy of North American Late Pleistocene Equus". PLOS ONE. 12 (8): e0183045. Bibcode:2017PLoSO..1283045B. doi:10.1371/journal.pone.0183045. PMC 5560644. PMID 28817644.
  73. ^ Carmen Nacarino-Meneses; Xavier Jordana; Guillem Orlandi-Oliveras; Meike Köhler (2017). "Reconstructing molar growth from enamel histology in extant and extinct Equus". Scientific Reports. 7 (1): Article number 15965. Bibcode:2017NatSR...715965N. doi:10.1038/s41598-017-16227-2. PMC 5698294. PMID 29162890.
  74. ^ Maeva J. Orliac; Ricardo Araújo; Fabrice Lihoreau (2017). "The petrosal and bony labyrinth of Diplobune minor, an enigmatic Artiodactyla from the Oligocene of Western Europe". Journal of Morphology. 278 (9): 1168–1184. doi:10.1002/jmor.20702. PMID 28516487. S2CID 36810178.
  75. ^ Germán Mariano Gasparini; Martín De los Reyes; Analía Francia; Carolina Saldanha Scherer; Daniel Gustavo Poiré (2017). "The oldest record of Hemiauchenia Gervais and Ameghino (Mammalia, Cetartiodactyla) in South America: comments about its paleobiogeographic and stratigraphic implications". Geobios. 50 (2): 141–153. Bibcode:2017Geobi..50..141G. doi:10.1016/j.geobios.2016.12.003. hdl:11336/48701. S2CID 132286129.
  76. ^ Tahlia Perry; Ayla L. van Loenen; Holly Heiniger; Carol Lee; Jaime Gongora; Alan Cooper; Kieren J. Mitchell (2017). "Ancient DNA analysis of the extinct North American flat-headed peccary (Platygonus compressus)". Molecular Phylogenetics and Evolution. 112: 258–267. Bibcode:2017MolPE.112..258P. doi:10.1016/j.ympev.2017.03.024. PMID 28363818.
  77. ^ Bastien Mennecart; Daniel DeMiguel; Faysal Bibi; Gertrud E. Rössner; Grégoire Métais; James M. Neenan; Shiqi Wang; Georg Schulz; Bert Müller; Loïc Costeur (2017). "Bony labyrinth morphology clarifies the origin and evolution of deer". Scientific Reports. 7 (1): Article number 13176. Bibcode:2017NatSR...713176M. doi:10.1038/s41598-017-12848-9. PMC 5640792. PMID 29030580.
  78. ^ Alexis Gabriel Rozenbaum; Dotan Shaked Gelband; Mordechai Stein; Henk K. Mienis; Rivka Rabinovich (2017). "First evidence of "ancient deer" (cervid) in the late Miocene Bira Formation, Northern Israel". PLOS ONE. 12 (11): e0185268. Bibcode:2017PLoSO..1285268R. doi:10.1371/journal.pone.0185268. PMC 5665429. PMID 29091714.
  79. ^ Melinda Danowitz; John C. Barry; Nikos Solounias (2017). "The earliest ossicone and post-cranial record of Giraffa". PLOS ONE. 12 (9): e0185139. Bibcode:2017PLoSO..1285139D. doi:10.1371/journal.pone.0185139. PMC 5605118. PMID 28926638.
  80. ^ Lisa Yeomans; Louise Martin; Tobias Richter (2017). "Expansion of the known distribution of Asiatic mouflon (Ovis orientalis) in the Late Pleistocene of the Southern Levant". Royal Society Open Science. 4 (8): 170409. Bibcode:2017RSOS....470409Y. doi:10.1098/rsos.170409. PMC 5579105. PMID 28878989.
  81. ^ Gina M. Semprebon; Nikos Solounias; Deng Tao (2017). "Dietary reconstruction of Hezhengia bohlini (Artiodactyla, Bovidae) from the late Miocene Basin of China using enamel microwear". Palaeogeography, Palaeoclimatology, Palaeoecology. 481: 57–63. doi:10.1016/j.palaeo.2017.05.023.
  82. ^ Duane Froese; Mathias Stiller; Peter D. Heintzman; Alberto V. Reyes; Grant D. Zazula; André E. R. Soares; Matthias Meyer; Elizabeth Hall; Britta J. L. Jensen; Lee J. Arnold; Ross D. E. MacPhee; Beth Shapiro (2017). "Fossil and genomic evidence constrains the timing of bison arrival in North America". Proceedings of the National Academy of Sciences of the United States of America. 114 (13): 3457–3462. Bibcode:2017PNAS..114.3457F. doi:10.1073/pnas.1620754114. PMC 5380047. PMID 28289222.
  83. ^ "When did bison arrive in North America?". Science Journal for Kids. 2017-07-26. Retrieved 2017-10-28.
  84. ^ Pauline Palacio; Véronique Berthonaud; Claude Guérin; Josie Lambourdière; Frédéric Maksud; Michel Philippe; Delphine Plaire; Thomas Stafford; Marie-Claude Marsolier-Kergoat; Jean-Marc Elalouf (2017). "Genome data on the extinct Bison schoetensacki establish it as a sister species of the extant European bison (Bison bonasus)". BMC Evolutionary Biology. 17 (1): 48. Bibcode:2017BMCEE..17...48P. doi:10.1186/s12862-017-0894-2. PMC 5303235. PMID 28187706.
  85. ^ Grant Zazula; Elizabeth Hall; P. Greg Hare; Christian Thomas; Rolf W. Mathewes; Catherine La Farge; André L Martel; Peter Heintzman; Beth Shapiro (2017). "A middle Holocene steppe bison and paleoenvironments from the Versleuce Meadows, Whitehorse, Yukon, Canada". Canadian Journal of Earth Sciences. 54 (11): 1138–1152. Bibcode:2017CaJES..54.1138Z. doi:10.1139/cjes-2017-0100. hdl:1807/78639. S2CID 54951935.
  86. ^ Fabrice Lihoreau; Léanie Alloing-Séguier; Pierre-Olivier Antoine; Jean-Renaud Boisserie; Laurent Marivaux; Grégoire Métais; Jean-Loup Welcomme (2017). "Enamel microstructure defines a major Paleogene hippopotamoid clade: the Merycopotamini (Cetartiodactyla, Hippopotamoidea)". Historical Biology: An International Journal of Paleobiology. 29 (7): 947–957. Bibcode:2017HBio...29..947L. doi:10.1080/08912963.2016.1274748. S2CID 90177082.
  87. ^ Mickaël J. Mourlam; Maeva J. Orliac (2017). "Infrasonic and Ultrasonic Hearing Evolved after the Emergence of Modern Whales". Current Biology. 27 (12): 1776–1781.e9. Bibcode:2017CBio...27E1776M. doi:10.1016/j.cub.2017.04.061. PMID 28602653. S2CID 23076925.
  88. ^ Manuel Martínez-Cáceres; Olivier Lambert; Christian de Muizon (2017). "The anatomy and phylogenetic affinities of Cynthiacetus peruvianus, a large Dorudon-like basilosaurid (Cetacea, Mammalia) from the late Eocene of Peru". Geodiversitas. 39 (1): 7–163. doi:10.5252/g2017n1a1. S2CID 90142285.
  89. ^ Travis Park; Alistair R. Evans; Stephen J. Gallagher; Erich M. G. Fitzgerald (2017). "Low-frequency hearing preceded the evolution of giant body size and filter feeding in baleen whales". Proceedings of the Royal Society B: Biological Sciences. 284 (1848): 20162528. doi:10.1098/rspb.2016.2528. PMC 5310610. PMID 28179519.
  90. ^ R. W. Boessenecker; R. E. Fordyce (2017). "Cosmopolitanism and Miocene survival of Eomysticetidae (Cetacea: Mysticeti) revealed by new fossils from New Zealand". New Zealand Journal of Geology and Geophysics. 60 (2): 145–157. Bibcode:2017NZJGG..60..145B. doi:10.1080/00288306.2017.1300176. S2CID 133204707.
  91. ^ Robert W. Boessenecker; Erum Ahmed; Jonathan H. Geisler (2017). "New records of the dolphin Albertocetus meffordorum (Odontoceti: Xenorophidae) from the lower Oligocene of South Carolina: Encephalization, sensory anatomy, postcranial morphology, and ontogeny of early odontocetes". PLOS ONE. 12 (11): e0186476. Bibcode:2017PLoSO..1286476B. doi:10.1371/journal.pone.0186476. PMC 5695589. PMID 29117197.
  92. ^ Jelle W.F. Reumer; Titus H. Mens; Klaas Post (2017). "New finds of giant raptorial sperm whale teeth (Cetacea, Physeteroidea) from the Westerschelde Estuary (province of Zeeland, the Netherlands)" (PDF). Deinsea. 17: 32–38.
  93. ^ Stephen J. Godfrey; Lawrence G. Barnes; Olivier Lambert (2017). "The Early Miocene odontocete Araeodelphis Natator Kellogg, 1957 (Cetacea; Platanistidae), from the Calvert Formation of Maryland, U.S.A.". Journal of Vertebrate Paleontology. 37 (2): e1278607. Bibcode:2017JVPal..37E8607G. doi:10.1080/02724634.2017.1278607. S2CID 90362603.
  94. ^ Graham J. Slater; Jeremy A. Goldbogen; Nicholas D. Pyenson (2017). "Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics". Proceedings of the Royal Society B: Biological Sciences. 284 (1855): 20170546. doi:10.1098/rspb.2017.0546. PMC 5454272. PMID 28539520.
  95. ^ David P. Hocking; Felix G. Marx; Erich M. G. Fitzgerald; Alistair R. Evans (2017). "Ancient whales did not filter feed with their teeth". Biology Letters. 13 (8): 20170348. doi:10.1098/rsbl.2017.0348. PMC 5582114. PMID 28855416.
  96. ^ Felix G. Marx; Alberto Collareta; Anna Gioncada; Klaas Post; Olivier Lambert; Elena Bonaccorsi; Mario Urbina; Giovanni Bianucci (2017). "How whales used to filter: exceptionally preserved baleen in a Miocene cetotheriid". Journal of Anatomy. 231 (2): 212–220. doi:10.1111/joa.12622. PMC 5522891. PMID 28542839.
  97. ^ Cheng-Hsiu Tsai; Alberto Collareta; Erich M.G. Fitzgerald; Felix G. Marx; Naoki Kohno; Mark Bosselaers; Gianni Insacco; Agatino Reitano; Rita Catanzariti; Masayuki Oishi; Giovanni Bianucci (2017). "Northern pygmy right whales highlight Quaternary marine mammal interchange". Current Biology. 27 (19): R1058–R1059. Bibcode:2017CBio...27R1058T. doi:10.1016/j.cub.2017.08.056. PMID 29017038. S2CID 23877418.
  98. ^ Mónica R. Buono; Marta S. Fernández; Mario A. Cozzuol; José I. Cuitiño; Erich M.G. Fitzgerald (2017). "The early Miocene balaenid Morenocetus parvus from Patagonia (Argentina) and the evolution of right whales". PeerJ. 5: e4148. doi:10.7717/peerj.4148. PMC 5742523. PMID 29302389.
  99. ^ Daniel J. Field; Robert Boessenecker; Rachel A. Racicot; Lovísa Ásbjörnsdóttir; Kristján Jónasson; Allison Y. Hsiang; Adam D. Behlke; Jakob Vinther (2017). "The oldest marine vertebrate fossil from the volcanic island of Iceland: a partial right whale skull from the high latitude Pliocene Tjörnes Formation". Palaeontology. 60 (2): 141–148. Bibcode:2017Palgy..60..141F. doi:10.1111/pala.12275. hdl:1983/953db179-65ed-45e2-9c9e-e8d708ae7e75.
  100. ^ Cheng-Hsiu Tsai (2017). "A Miocene breeding ground of an extinct baleen whale (Cetacea: Mysticeti)". PeerJ. 5: e3711. doi:10.7717/peerj.3711. PMC 5571789. PMID 28848691.
  101. ^ Cheng-Hsiu Tsai; Robert W. Boessenecker (2017). "The earliest-known fin whale, Balaenoptera physalus, from the Early Pleistocene of Northern California, U.S.A.". Journal of Vertebrate Paleontology. 37 (2): e1306536. Bibcode:2017JVPal..37E6536T. doi:10.1080/02724634.2017.1306536. S2CID 133846370.
  102. ^ Elsa Panciroli; Christine Janis; Maximilion Stockdale; Alberto Martín-Serra (2017). "Correlates between calcaneal morphology and locomotion in extant and extinct carnivorous mammals". Journal of Morphology. 278 (10): 1333–1353. doi:10.1002/jmor.20716. hdl:1983/07385c86-7514-47c4-97a3-625ce7fcfb18. PMID 28603865. S2CID 7632998.
  103. ^ Matthew R. Borths; Nancy J. Stevens (2017). "Deciduous dentition and dental eruption of Hyainailouroidea (Hyaenodonta, "Creodonta," Placentalia, Mammalia)". Palaeontologia Electronica. 20 (3): Article number 20.3.55A. doi:10.26879/776.
  104. ^ Cathrin Pfaff; Doris Nagel; Gregg Gunnell; Gerhard W. Weber; Jürgen Kriwet; Michael Morlo; Katharina Bastl (2017). "Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth". Journal of Anatomy. 230 (2): 282–289. doi:10.1111/joa.12545. PMC 5244453. PMID 27666133.
  105. ^ Katharina Bastl; Doris Nagel; Floréal Solé (2017). "Incus facet morphology in carnivorous mammals from different ecosystems: Taxonomy vs. habitat". Comptes Rendus Palevol. 16 (3): 284–302. Bibcode:2017CRPal..16..284B. doi:10.1016/j.crpv.2016.11.008.
  106. ^ Caitlin Brown; Mairin Balisi; Christopher A. Shaw; Blaire Van Valkenburgh (2017). "Skeletal trauma reflects hunting behaviour in extinct sabre-tooth cats and dire wolves". Nature Ecology & Evolution. 1 (5): Article number 0131. Bibcode:2017NatEE...1..131B. doi:10.1038/s41559-017-0131. PMID 28812696. S2CID 8008808.
  107. ^ Lorenzo Rook; Saverio Bartolini Lucenti; Maia Bukhsianidze; David Lordkipanidze (2017). "The Kvabebi Canidae record revisited (late Pliocene, Sighnaghi, eastern Georgia)". Journal of Paleontology. 91 (6): 1258–1271. Bibcode:2017JPal...91.1258R. doi:10.1017/jpa.2017.73. S2CID 134781923.
  108. ^ J. Tarquini; N. Toledo; C. C. Morgan; L. H. Soibelzon (2017). "The forelimb of †Cyonasua sp. (Procyonidae, Carnivora): ecomorphological interpretation in the context of carnivorans". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 106 (4): 325–335. doi:10.1017/S1755691016000207. hdl:11336/49712.
  109. ^ Alberto Valenciano; Juan Abella; Ursula B. Göhlich; M. Ángeles Álvarez-Sierra; Jorge Morales (2017). "Re-evaluation of the very large Eomellivora fricki (Pia, 1939) (Carnivora, Mustelidae, Mellivorinae) from the Late Miocene of Austria". Palaeontologia Electronica. 20 (1): Article number 20.1.17A. doi:10.26879/691. hdl:10261/153612.
  110. ^ Mauro I. Schiaffini; Francisco J. Prevosti; Brenda S. Ferrero; Jorge I. Noriega (2017). "A Late Pleistocene Guloninae (Carnivora, Mustelidae) from South America (Argentina, Entre Ríos province), biogeographic implications". Journal of South American Earth Sciences. 78: 141–149. Bibcode:2017JSAES..78..141S. doi:10.1016/j.jsames.2017.06.006. hdl:11336/56337.
  111. ^ Z. Jack Tseng; Adolfo Pacheco-Castro; Oscar Carranza-Castañeda; José Jorge Aranda-Gómez; Xiaoming Wang; Hilda Troncoso (2017). "Discovery of the fossil otter Enhydritherium terraenovae (Carnivora, Mammalia) in Mexico reconciles a palaeozoogeographic mystery". Biology Letters. 13 (6): 20170259. doi:10.1098/rsbl.2017.0259. PMC 5493742. PMID 28615353.
  112. ^ Z. Jack Tseng; Denise F. Su; Xiaoming Wang; Stuart C. White; Xueping Ji (2017). "Feeding capability in the extinct giant Siamogale melilutra and comparative mandibular biomechanics of living Lutrinae". Scientific Reports. 7 (1): Article number 15225. Bibcode:2017NatSR...715225T. doi:10.1038/s41598-017-15391-9. PMC 5680181. PMID 29123190.
  113. ^ Marco Cherin (2017). "New material of Lutra simplicidens (Carnivora, Mustelidae, Lutrinae), a key taxon for understanding the evolution of European otters". Rivista Italiana di Paleontologia e Stratigrafia. 123 (3): 433–441. doi:10.13130/2039-4942/9024.
  114. ^ Gema Siliceo; Manuel J. Salesa; Mauricio Antón; Stéphane Peigné; Jorge Morales (2017). "Functional anatomy of the cervical region in the late Miocene amphicyonid Magericyon anceps (Carnivora, Amphicyonidae): implications for its feeding behaviour". Palaeontology. 60 (3): 329–347. Bibcode:2017Palgy..60..329S. doi:10.1111/pala.12286. S2CID 90381609.
  115. ^ Xiaoming Wang; Natalia Rybczynski; C. Richard Harington; Stuart C. White; Richard H. Tedford (2017). "A basal ursine bear (Protarctos abstrusus) from the Pliocene High Arctic reveals Eurasian affinities and a diet rich in fermentable sugars". Scientific Reports. 7 (1): Article number 17722. Bibcode:2017NatSR...717722W. doi:10.1038/s41598-017-17657-8. PMC 5735171. PMID 29255278.
  116. ^ Kristof Veitschegger (2017). "The effect of body size evolution and ecology on encephalization in cave bears and extant relatives". BMC Evolutionary Biology. 17 (1): 124. Bibcode:2017BMCEE..17..124V. doi:10.1186/s12862-017-0976-1. PMC 5460516. PMID 28583080.
  117. ^ Paweł Mackiewicz; Mateusz Baca; Danijela Popović; Paweł Socha; Krzysztof Stefaniak; Adrian Marciszak; Adam Nadachowski (2017). "Estimating the extinction time of two cave bears, Ursus spelaeus and U. ingressus" (PDF). Acta Zoologica Cracoviensia. 60 (2): 1–14. doi:10.3409/azc.60_2.01.
  118. ^ Leonard Dewaele; Olivier Lambert; Stephen Louwye (2017). "On Prophoca and Leptophoca (Pinnipedia, Phocidae) from the Miocene of the North Atlantic realm: redescription, phylogenetic affinities and paleobiogeographic implications". PeerJ. 5: e3024. doi:10.7717/peerj.3024. PMC 5322758. PMID 28243538.
  119. ^ Víctor Vinuesa; Joan Madurell-Malapeira; Lars Werdelin; Josep M. Robles; Pau Obradó; David M. Alba (2017). "A New Skull of Hyaenictis Gaudry, 1861 (Carnivora, Hyaenidae) Shows Incipient Adaptations to Durophagy". Journal of Mammalian Evolution. 24 (2): 207–219. doi:10.1007/s10914-016-9334-0. S2CID 23453043.
  120. ^ Larisa R. G. DeSantis; Zhijie Jack Tseng; Jinyi Liu; Aaron Hurst; Blaine W. Schubert; Qigao Jiangzuo (2017). "Assessing niche conservatism using a multiproxy approach: dietary ecology of extinct and extant spotted hyenas". Paleobiology. 43 (2): 286–303. Bibcode:2017Pbio...43..286D. doi:10.1017/pab.2016.45. S2CID 90839982.
  121. ^ Alberto Martín-Serra; Borja Figueirido; Paul Palmqvist (2017). "Non-decoupled morphological evolution of the fore- and hindlimb of sabretooth predators". Journal of Anatomy. 231 (4): 532–542. doi:10.1111/joa.12654. PMC 5603785. PMID 28703361.
  122. ^ Katherine Long; Donald Prothero; Meena Madan; Valerie J. P. Syverson (2017). "Did saber-tooth kittens grow up musclebound? A study of postnatal limb bone allometry in felids from the Pleistocene of Rancho La Brea". PLOS ONE. 12 (9): e0183175. Bibcode:2017PLoSO..1283175L. doi:10.1371/journal.pone.0183175. PMC 5617143. PMID 28953899.
  123. ^ Johanna L.A. Paijmans; Ross Barnett; M. Thomas P. Gilbert; M. Lisandra Zepeda-Mendoza; Jelle W.F. Reumer; John de Vos; Grant Zazula; Doris Nagel; Gennady F. Baryshnikov; Jennifer A. Leonard; Nadin Rohland; Michael V. Westbury; Axel Barlow; Michael Hofreiter (2017). "Evolutionary history of saber-toothed cats based on ancient mitogenomics". Current Biology. 27 (21): 3330–3336.e5. Bibcode:2017CBio...27E3330P. doi:10.1016/j.cub.2017.09.033. PMID 29056454. S2CID 38005290.
  124. ^ Denis Geraads; Stéphane Peigné (2017). "Re-Appraisal of "Felis" pamiri Ozansoy, 1959 (Carnivora, Felidae) from the Upper Miocene of Turkey: the Earliest Pantherin Cat?" (PDF). Journal of Mammalian Evolution. 24 (4): 415–425. doi:10.1007/s10914-016-9349-6. S2CID 207195894.
  125. ^ Andrew R. Cuff; Christopher Stockey; Anjali Goswami (2017). "Endocranial Morphology of the Extinct North American Lion (Panthera atrox)" (PDF). Brain, Behavior and Evolution. 88 (3–4): 213–221. doi:10.1159/000454705. PMID 28092905. S2CID 8191542.
  126. ^ Andrew R. Cuff; Anjali Goswami; John R. Hutchinson (2017). "Reconstruction of the musculoskeletal system in an extinct lion". Palaeontologia Electronica. 20 (2): Article number 20.2.23A. doi:10.26879/688.
  127. ^ Nicolás R. Chimento; Federico L. Agnolin (2017). "The fossil American lion (Panthera atrox) in South America: Palaeobiogeographical implications". Comptes Rendus Palevol. 16 (8): 850–864. Bibcode:2017CRPal..16..850C. doi:10.1016/j.crpv.2017.06.009. hdl:11336/65990.
  128. ^ Ana R. Gomez Cano; Yuri Kimura; Fernando Blanco; Iris Menéndez; María A. Álvarez-Sierra; Manuel Hernández Fernández (2017). "Ecomorphological characterization of murines and non-arvicoline cricetids (Rodentia) from south-western Europe since the latest Middle Miocene to the Mio-Pliocene boundary (MN 7/8–MN13)". PeerJ. 5: e3646. doi:10.7717/peerj.3646. PMC 5619236. PMID 28966888.
  129. ^ Marian C. Reyes; Thomas Ingicco; Philip J. Piper; Noel Amano; Alfred F. Pawlik (2017). "First fossil evidence of the extinct Philippine cloud rat Crateromys paulus (Muridae: Murinae: Phloeomyini) from Ilin Island, Mindoro, and insights into its Holocene abundance". Proceedings of the Biological Society of Washington. 130 (1): 84–97. doi:10.2988/17-00012. S2CID 135196784.
  130. ^ Lüzhou Li; Qiang Li; Xiaoyu Lu; Xijun Ni (2017). "Morphology of an Early Oligocene beaver Propalaeocastor irtyshensis and the status of the genus Propalaeocastor". PeerJ. 5: e3311. doi:10.7717/peerj.3311. PMC 5436589. PMID 28533963.
  131. ^ Ornella C. Bertrand; Farrah Amador-Mughal; Mary T. Silcox (2017). "Virtual endocast of the early Oligocene Cedromus wilsoni (Cedromurinae) and brain evolution in squirrels". Journal of Anatomy. 230 (1): 128–151. doi:10.1111/joa.12537. PMC 5192888. PMID 27580644.
  132. ^ Stephen G. B. Chester; Thomas E. Williamson; Jonathan I. Bloch; Mary T. Silcox; Eric J. Sargis (2017). "Oldest skeleton of a plesiadapiform provides additional evidence for an exclusively arboreal radiation of stem primates in the Palaeocene". Royal Society Open Science. 4 (5): 170329. Bibcode:2017RSOS....470329C. doi:10.1098/rsos.170329. PMC 5451839. PMID 28573038.
  133. ^ Doug M. Boyer; Séverine Toussaint; Marc Godinot (2017). "Postcrania of the most primitive euprimate and implications for primate origins". Journal of Human Evolution. 111: 202–215. Bibcode:2017JHumE.111..202B. doi:10.1016/j.jhevol.2017.07.005. PMID 28874272.
  134. ^ Margot Bernardi; Sébastien Couette (2017). "Eocene paleoecology of Adapis parisiensis (Primate, Adapidae): From inner ear to lifestyle". The Anatomical Record. 300 (9): 1576–1588. doi:10.1002/ar.23609. PMID 28452186. S2CID 19045637.
  135. ^ Joan Femenias-Gual; Judit Marigó; Raef Minwer-Barakat; Salvador Moyà-Solà (2017). "New dental and postcranial material of Agerinia smithorum (Primates, Adapiformes) from the type locality Casa Retjo-1 (early Eocene, Iberian Peninsula)". Journal of Human Evolution. 113: 127–136. Bibcode:2017JHumE.113..127F. doi:10.1016/j.jhevol.2017.08.015. PMID 29054163.
  136. ^ Jonathan M. G. Perry; Gregg F. Gunnell; Robert J. Emry (2017). "New cranial material of Notharctus (Mammalia, Primates, Notharctidae) from the Sheep Pass Formation, Elderberry Canyon, Nevada, with implications for incisor morphology and paleogeography of notharctine primates". Journal of Vertebrate Paleontology. 37 (4): e1331914. Bibcode:2017JVPal..37E1914P. doi:10.1080/02724634.2017.1331914. S2CID 133982802.
  137. ^ Stephen R. Frost; Charles Saanane; Britt M. Starkovich; Hilde Schwartz; Friedemann Schrenk; Katerina Harvati (2017). "New cranium of the large cercopithecid primate Theropithecus oswaldi leakeyi (Hopwood, 1934) from the paleoanthropological site of Makuyuni, Tanzania". Journal of Human Evolution. 109: 46–56. Bibcode:2017JHumE.109...46F. doi:10.1016/j.jhevol.2017.05.007. PMID 28688459.
  138. ^ Ghislain Thiery; Geoffrey Gillet; Vincent Lazzari; Gildas Merceron; Franck Guy (2017). "Was Mesopithecus a seed eating colobine? Assessment of cracking, grinding and shearing ability using dental topography". Journal of Human Evolution. 112: 79–92. Bibcode:2017JHumE.112...79T. doi:10.1016/j.jhevol.2017.09.002. PMID 29037418.
  139. ^ Anek R. Sankhyan; Jay Kelley; Terry Harrison (2017). "A highly derived pliopithecoid from the Late Miocene of Haritalyangar, India". Journal of Human Evolution. 105: 1–12. Bibcode:2017JHumE.105....1S. doi:10.1016/j.jhevol.2017.01.010. PMID 28366196.
  140. ^ Andrew S. Deane (2017). "Re-evaluating the diets of Morotopithecus bishopi and Afropithecus turkanensis: An anterior dentognathic perspective". Journal of Human Evolution. 112: 1–14. Bibcode:2017JHumE.112....1D. doi:10.1016/j.jhevol.2017.08.012. PMID 29037412.
  141. ^ Jochen Fuss; Nikolai Spassov; David R. Begun; Madelaine Böhme (2017). "Potential hominin affinities of Graecopithecus from the Late Miocene of Europe". PLOS ONE. 12 (5): e0177127. Bibcode:2017PLoSO..1277127F. doi:10.1371/journal.pone.0177127. PMC 5439669. PMID 28531170.
  142. ^ Julien Benoit; Francis J. Thackeray (2017). "A cladistic analysis of Graecopithecus". South African Journal of Science. 113 (11/12): #a0238. doi:10.17159/sajs.2017/a0238.
  143. ^ Jochen Fuss; Nikolai Spassov; Madelaine Böhme; David R. Begun (2018). "Response to Benoit and Thackeray (2017): "A cladistic analysis of Graecopithecus"". South African Journal of Science. 114 (5/6): 11–12. doi:10.17159/sajs.2018/a0267.
  144. ^ Madelaine Böhme; Nikolai Spassov; Martin Ebner; Denis Geraads; Latinka Hristova; Uwe Kirscher; Sabine Kötter; Ulf Linnemann; Jérôme Prieto; Socrates Roussiakis; George Theodorou; Gregor Uhlig; Michael Winklhofer (2017). "Messinian age and savannah environment of the possible hominin Graecopithecus from Europe". PLOS ONE. 12 (5): e0177347. Bibcode:2017PLoSO..1277347B. doi:10.1371/journal.pone.0177347. PMC 5439672. PMID 28531204.
  145. ^ Gerard D. Gierliński; Grzegorz Niedźwiedzki; Martin G. Lockley; Athanassios Athanassiou; Charalampos Fassoulas; Zofia Dubicka; Andrzej Boczarowski; Matthew R. Bennett; Per Erik Ahlberg (2017). "Possible hominin footprints from the late Miocene (c. 5.7 Ma) of Crete?". Proceedings of the Geologists' Association. 128 (5–6): 697–710. Bibcode:2017PrGA..128..697G. doi:10.1016/j.pgeola.2017.07.006. hdl:20.500.12128/3647.
  146. ^ Jeff Meldrum; Esteban Sarmiento (2018). "Comments on possible Miocene hominin footprints". Proceedings of the Geologists' Association. 129 (4): 577–580. Bibcode:2018PrGA..129..577M. doi:10.1016/j.pgeola.2018.05.006. S2CID 134963777.
  147. ^ Willem Jan Zachariasse; Lucas J. Lourens (2022). "About the age and depositional depth of the sediments with reported bipedal footprints at Trachilos (NW Crete, Greece)". Scientific Reports. 12 (1). 18471. Bibcode:2022NatSR..1218471Z. doi:10.1038/s41598-022-23296-5. PMC 9630425. PMID 36323766.
  148. ^ Manuel Will; Adrián Pablos; Jay T. Stock (2017). "Long-term patterns of body mass and stature evolution within the hominin lineage". Royal Society Open Science. 4 (11): 171339. doi:10.1098/rsos.171339. PMC 5717693. PMID 29291118.
  149. ^ Carol V. Ward; Thierra K. Nalley; Fred Spoor; Paul Tafforeau; Zeresenay Alemseged (2017). "Thoracic vertebral count and thoracolumbar transition in Australopithecus afarensis". Proceedings of the National Academy of Sciences of the United States of America. 114 (23): 6000–6004. Bibcode:2017PNAS..114.6000W. doi:10.1073/pnas.1702229114. PMC 5468642. PMID 28533391.
  150. ^ C.V. Ward; J.M. Plavcan; F.K. Manthi (2017). "New fossils of Australopithecus anamensis from Kanapoi, West Turkana, Kenya (2012–2015)". Journal of Human Evolution. 140: Article 102368. doi:10.1016/j.jhevol.2017.07.008. PMID 28844328. S2CID 33809601.
  151. ^ Noel Cameron; Barry Bogin; Debra Bolter; Lee R. Berger (2017). "The postcranial skeletal maturation of Australopithecus sediba". American Journal of Physical Anthropology. 163 (3): 633–640. doi:10.1002/ajpa.23234. PMID 28464269. S2CID 3287309.
  152. ^ William H. Kimbel; Yoel Rak (2017). "Australopithecus sediba and the emergence of Homo: Questionable evidence from the cranium of the juvenile holotype MH 1". Journal of Human Evolution. 107: 94–106. Bibcode:2017JHumE.107...94K. doi:10.1016/j.jhevol.2017.03.011. PMID 28526292.
  153. ^ Scott A. Blumenthal; Naomi E. Levin; Francis H. Brown; Jean-Philip Brugal; Kendra L. Chritz; John M. Harris; Glynis E. Jehle; Thure E. Cerling (2017). "Aridity and hominin environments". Proceedings of the National Academy of Sciences of the United States of America. 114 (28): 7331–7336. Bibcode:2017PNAS..114.7331B. doi:10.1073/pnas.1700597114. PMC 5514716. PMID 28652366.
  154. ^ Robinson, Joshua R.; Rowan, John; Campisano, Christopher J.; Wynn, Jonathan G.; Reed, Kaye E. (2017). "Late Pliocene environmental change during the transition from Australopithecus to Homo". Nature Ecology & Evolution. 1 (6): Article number 0159. Bibcode:2017NatEE...1..159R. doi:10.1038/s41559-017-0159. PMID 28812639. S2CID 7434894.
  155. ^ Yonatan Sahle; Sireen El Zaatari; Tim D. White (2017). "Hominid butchers and biting crocodiles in the African Plio–Pleistocene". Proceedings of the National Academy of Sciences of the United States of America. 114 (50): 13164–13169. Bibcode:2017PNAS..11413164S. doi:10.1073/pnas.1716317114. PMC 5740633. PMID 29109249.
  156. ^ Shi-Xia Yang; Michael D. Petraglia; Ya-Mei Hou; Jian-Ping Yue; Cheng-Long Deng; Ri-Xiang Zhu (2017). "The lithic assemblages of Donggutuo, Nihewan basin: Knapping skills of early Pleistocene hominins in North China". PLOS ONE. 12 (9): e0185101. Bibcode:2017PLoSO..1285101Y. doi:10.1371/journal.pone.0185101. PMC 5608319. PMID 28934295.
  157. ^ Debbie Argue; Colin P. Groves; Michael S.Y. Lee; William L. Jungers (2017). "The affinities of Homo floresiensis based on phylogenetic analyses of cranial, dental, and postcranial characters". Journal of Human Evolution. 107: 107–133. Bibcode:2017JHumE.107..107A. doi:10.1016/j.jhevol.2017.02.006. PMID 28438318.
  158. ^ Paul H.G.M. Dirks; Eric M. Roberts; Hannah Hilbert-Wolf; Jan D. Kramers; John Hawks; Anthony Dosseto; Mathieu Duval; Marina Elliott; Mary Evans; Rainer Grün; John Hellstrom; Andy I.R. Herries; Renaud Joannes-Boyau; Tebogo V. Makhubela; Christa J. Placzek; Jessie Robbins; Carl Spandler; Jelle Wiersma; Jon Woodhead; Lee R. Berger (2017). "The age of Homo naledi and associated sediments in the Rising Star Cave, South Africa". eLife. 6: e24231. doi:10.7554/eLife.24231. PMC 5423772. PMID 28483040.
  159. ^ John Hawks; Marina Elliott; Peter Schmid; Steven E. Churchill; Darryl J. de Ruiter; Eric M. Roberts; Hannah Hilbert-Wolf; Heather M. Garvin; Scott A. Williams; Lucas K. Delezene; Elen M. Feuerriegel; Patrick Randolph-Quinney; Tracy L. Kivell; Myra F. Laird; Gaokgatlhe Tawane; Jeremy M. DeSilva; Shara E. Bailey; Juliet K. Brophy; Marc R. Meyer; Matthew M. Skinner; Matthew W. Tocheri; Caroline VanSickle; Christopher S. Walker; Timothy L. Campbell; Brian Kuhn; Ashley Kruger; Steven Tucker; Alia Gurtov; Nompumelelo Hlophe; Rick Hunter; Hannah Morris; Becca Peixotto; Maropeng Ramalepa; Dirk van Rooyen; Mathabela Tsikoane; Pedro Boshoff; Paul H.G.M. Dirks; Lee R. Berger (2017). "New fossil remains of Homo naledi from the Lesedi Chamber, South Africa". eLife. 6: e24232. doi:10.7554/eLife.24232. PMC 5423776. PMID 28483039.
  160. ^ Lauren Schroeder; Jill E. Scott; Heather M. Garvin; Myra F. Laird; Mana Dembo; Davorka Radovčić; Lee R. Berger; Darryl J. de Ruiter; Rebecca R. Ackermann (2017). "Skull diversity in the Homo lineage and the relative position of Homo naledi". Journal of Human Evolution. 104: 124–135. Bibcode:2017JHumE.104..124S. doi:10.1016/j.jhevol.2016.09.014. PMID 27836166.
  161. ^ Myra F. Laird; Lauren Schroeder; Heather M. Garvin; Jill E. Scott; Mana Dembo; Davorka Radovčić; Charles M. Musiba; Rebecca R. Ackermann; Peter Schmid; John Hawks; Lee R. Berger; Darryl J. de Ruiter (2017). "The skull of Homo naledi". Journal of Human Evolution. 104: 100–123. Bibcode:2017JHumE.104..100L. doi:10.1016/j.jhevol.2016.09.009. PMID 27855982.
  162. ^ Scott A. Williams; Daniel García-Martínez; Markus Bastir; Marc R. Meyer; Shahed Nalla; John Hawks; Peter Schmid; Steven E. Churchill; Lee R. Berger (2017). "The vertebrae and ribs of Homo naledi". Journal of Human Evolution. 104: 136–154. Bibcode:2017JHumE.104..136W. doi:10.1016/j.jhevol.2016.11.003. PMID 28094004.
  163. ^ Elen M. Feuerriegel; David J. Green; Christopher S. Walker; Peter Schmid; John Hawks; Lee R. Berger; Steven E. Churchill (2017). "The upper limb of Homo naledi". Journal of Human Evolution. 104: 155–173. Bibcode:2017JHumE.104..155F. doi:10.1016/j.jhevol.2016.09.013. PMID 27839696.
  164. ^ Damiano Marchi; Christopher S. Walker; Pianpian Wei; Trenton W. Holliday; Steven E. Churchill; Lee R. Berger; Jeremy M. DeSilva (2017). "The thigh and leg of Homo naledi". Journal of Human Evolution. 104: 174–204. Bibcode:2017JHumE.104..174M. doi:10.1016/j.jhevol.2016.09.005. hdl:11568/826512. PMID 27855981.
  165. ^ Ian Towle; Joel D. Irish; Isabelle De Groote (2017). "Behavioral inferences from the high levels of dental chipping in Homo naledi" (PDF). American Journal of Physical Anthropology. 164 (1): 184–192. doi:10.1002/ajpa.23250. PMID 28542710. S2CID 24296825.
  166. ^ Heather M. Garvin; Marina C. Elliott; Lucas K. Delezene; John Hawks; Steven E. Churchill; Lee R. Berger; Trenton W. Holliday (2017). "Body size, brain size, and sexual dimorphism in Homo naledi from the Dinaledi Chamber". Journal of Human Evolution. 111: 119–138. Bibcode:2017JHumE.111..119G. doi:10.1016/j.jhevol.2017.06.010. PMID 28874266.
  167. ^ Zachary Cofran; Christopher S. Walker (2017). "Dental development in Homo naledi". Biology Letters. 13 (8): 20170339. doi:10.1098/rsbl.2017.0339. PMC 5582112. PMID 28855415.
  168. ^ Walter A. Neves; Danilo V. Bernardo; Ivan Pantaleoni (2017). "Morphological affinities of Homo naledi with other Plio-Pleistocene hominins: a phenetic approach". Anais da Academia Brasileira de Ciências. 89 (3 Suppl): 2199–2207. doi:10.1590/0001-3765201720160841. PMID 28746621.
  169. ^ Véronique Michel; Chuan-Chou Shen; Jon Woodhead; Hsun-Ming Hu; Chung-Che Wu; Pierre-Élie Moullé; Samir Khatib; Dominique Cauche; Marie-Hélène Moncel; Patricia Valensi; Yu-Min Chou; Sylvain Gallet; Anna Echassoux; François Orange; Henry de Lumley (2017). "New dating evidence of the early presence of hominins in Southern Europe". Scientific Reports. 7 (1): Article number 10074. Bibcode:2017NatSR...710074M. doi:10.1038/s41598-017-10178-4. PMC 5577296. PMID 28855634.
  170. ^ Zhan-Yang Li; Xiu-Jie Wu; Li-Ping Zhou; Wu Liu; Xing Gao; Xiao-Mei Nian; Erik Trinkaus (2017). "Late Pleistocene archaic human crania from Xuchang, China". Science. 355 (6328): 969–972. Bibcode:2017Sci...355..969L. doi:10.1126/science.aal2482. PMID 28254945. S2CID 206654741.
  171. ^ Sheela Athreya; Xinzhi Wu (2017). "A multivariate assessment of the Dali hominin cranium from China: Morphological affinities and implications for Pleistocene evolution in East Asia". American Journal of Physical Anthropology. 164 (4): 679–701. doi:10.1002/ajpa.23305. PMID 29068047.
  172. ^ Joan Daura; Montserrat Sanz; Juan Luis Arsuaga; Dirk L. Hoffmann; Rolf M. Quam; María Cruz Ortega; Elena Santos; Sandra Gómez; Angel Rubio; Lucía Villaescusa; Pedro Souto; João Mauricio; Filipa Rodrigues; Artur Ferreira; Paulo Godinho; Erik Trinkaus; João Zilhão (2017). "New Middle Pleistocene hominin cranium from Gruta da Aroeira (Portugal)". Proceedings of the National Academy of Sciences of the United States of America. 114 (13): 3397–3402. Bibcode:2017PNAS..114.3397D. doi:10.1073/pnas.1619040114. PMC 5380066. PMID 28289213.
  173. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2017). "A 130,000-year-old archaeological site in southern California, USA". Nature. 544 (7651): 479–483. Bibcode:2017Natur.544..479H. doi:10.1038/nature22065. PMID 28447646. S2CID 205255425.
  174. ^ Eric Boëda; Christophe Griggo; Christelle Lahaye (2017). "The Cerutti Mastodon Site: Archaeological or Paleontological?". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 3 (3): 193–195. doi:10.1080/20555563.2017.1338006. S2CID 90699499.
  175. ^ Gary Haynes (2017). "The Cerutti Mastodon". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 3 (3): 196–199. doi:10.1080/20555563.2017.1330103. S2CID 134814811.
  176. ^ Todd J. Braje; Tom D. Dillehay; Jon M. Erlandson; Scott M. Fitzpatrick; Donald K. Grayson; Donald K. Grayson; Robert L. Kelly; Richard G. Klein; Richard G. Klein; Torben C. Rick (2017). "Were hominins in California ~130,000 years ago?". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 3 (3): 200–202. doi:10.1080/20555563.2017.1348091. S2CID 133673949.
  177. ^ Joseph V. Ferraro; Katie M. Binetti; Logan A. Wiest; Donald Esker; Lori E. Baker; Steven L. Forman (2018). "Contesting early archaeology in California". Nature. 554 (7691): E1–E2. Bibcode:2018Natur.554E...1F. doi:10.1038/nature25165. PMID 29420468. S2CID 205263114.
  178. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Richard A. Cerutti; Adam N. Rountrey; Lawrence Vescera; Kathleen A. Holen (2018). "Holen et al. reply". Nature. 554 (7691): E3. Bibcode:2018Natur.554E...3H. doi:10.1038/nature25166. PMID 29420475. S2CID 4466451.
  179. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Adam N. Rountrey; Kathleen A. Holen (2018). "Broken Bones and Hammerstones at the Cerutti Mastodon Site: A Reply to Haynes". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 4 (1): 8–11. doi:10.1080/20555563.2017.1396835. S2CID 166014283.
  180. ^ Steven R. Holen; Thomas A. Deméré; Daniel C. Fisher; Richard Fullagar; James B. Paces; George T. Jefferson; Jared M. Beeton; Adam N. Rountrey; Kathleen A. Holen (2018). "Disparate Perspectives on Evidence from the Cerutti Mastodon Site: A Reply to Braje et al.". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 4 (1): 12–15. doi:10.1080/20555563.2017.1396836. S2CID 165357286.
  181. ^ Patrick M. Ferrell (2019). "The Cerutti Mastodon Site reinterpreted with reference to freeway construction plans and methods". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 5 (1): 1–7. doi:10.1080/20555563.2019.1589663. S2CID 167172979.
  182. ^ Mark Q. Sutton; Jennifer Parkinson; Martin D. Rosen (2019). "Observations regarding the Cerutti mastodon". PaleoAmerica. A Journal of Early Human Migration and Dispersal. 5 (1): 8–15. doi:10.1080/20555563.2019.1589409. S2CID 155596679.
  183. ^ Viviane Slon; Charlotte Hopfe; Clemens L. Weiß; Fabrizio Mafessoni; Marco de la Rasilla; Carles Lalueza-Fox; Antonio Rosas; Marie Soressi; Monika V. Knul; Rebecca Miller; John R. Stewart; Anatoly P. Derevianko; Zenobia Jacobs; Bo Li; Richard G. Roberts; Michael V. Shunkov; Henry de Lumley; Christian Perrenoud; Ivan Gušić; Željko Kućan; Pavao Rudan; Ayinuer Aximu-Petri; Elena Essel; Sarah Nagel; Birgit Nickel; Anna Schmidt; Kay Prüfer; Janet Kelso; Hernán A. Burbano; Svante Pääbo; Matthias Meyer (2017). "Neandertal and Denisovan DNA from Pleistocene sediments". Science. 356 (6338): 605–608. Bibcode:2017Sci...356..605S. doi:10.1126/science.aam9695. hdl:1887/74733. PMID 28450384. S2CID 206658200.
  184. ^ Alan R. Rogers; Ryan J. Bohlender; Chad D. Huff (2017). "Early history of Neanderthals and Denisovans". Proceedings of the National Academy of Sciences of the United States of America. 114 (37): 9859–9863. Bibcode:2017PNAS..114.9859R. doi:10.1073/pnas.1706426114. PMC 5604018. PMID 28784789.
  185. ^ Fabrizio Mafessoni; Kay Prüfer (2017). "Better support for a small effective population size of Neandertals and a long shared history of Neandertals and Denisovans". Proceedings of the National Academy of Sciences of the United States of America. 114 (48): E10256–E10257. Bibcode:2017PNAS..11410256M. doi:10.1073/pnas.1716918114. PMC 5715791. PMID 29138326.
  186. ^ Alan R. Rogers; Ryan J. Bohlender; Chad D. Huff (2017). "Reply to Mafessoni and Prüfer: Inferences with and without singleton site patterns". Proceedings of the National Academy of Sciences of the United States of America. 114 (48): E10258–E10260. Bibcode:2017PNAS..11410258R. doi:10.1073/pnas.1717085114. PMC 5715792. PMID 29138325.
  187. ^ Viviane Slon; Bence Viola; Gabriel Renaud; Marie-Theres Gansauge; Stefano Benazzi; Susanna Sawyer; Jean-Jacques Hublin; Michael V. Shunkov; Anatoly P. Derevianko; Janet Kelso; Kay Prüfer; Matthias Meyer; Svante Pääbo (2017). "A fourth Denisovan individual". Science Advances. 3 (7): e1700186. Bibcode:2017SciA....3E0186S. doi:10.1126/sciadv.1700186. PMC 5501502. PMID 28695206.
  188. ^ Thibaut Devièse; Ivor Karavanić; Daniel Comeskey; Cara Kubiak; Petra Korlević; Mateja Hajdinjak; Siniša Radović; Noemi Procopio; Michael Buckley; Svante Pääbo; Tom Higham (2017). "Direct dating of Neanderthal remains from the site of Vindija Cave and implications for the Middle to Upper Paleolithic transition". Proceedings of the National Academy of Sciences of the United States of America. 114 (40): 10606–10611. Bibcode:2017PNAS..11410606D. doi:10.1073/pnas.1709235114. PMC 5635904. PMID 28874524.
  189. ^ Kay Prüfer; Cesare de Filippo; Steffi Grote; Fabrizio Mafessoni; Petra Korlević; Mateja Hajdinjak; Benjamin Vernot; Laurits Skov; Pinghsun Hsieh; Stéphane Peyrégne; David Reher; Charlotte Hopfe; Sarah Nagel; Tomislav Maricic; Qiaomei Fu; Christoph Theunert; Rebekah Rogers; Pontus Skoglund; Manjusha Chintalapati; Michael Dannemann; Bradley J. Nelson; Felix M. Key; Pavao Rudan; Željko Kućan; Ivan Gušić; Liubov V. Golovanova; Vladimir B. Doronichev; Nick Patterson; David Reich; Evan E. Eichler; Montgomery Slatkin; Mikkel H. Schierup; Aida Andrés; Janet Kelso; Matthias Meyer; Svante Pääbo (2017). "A high-coverage Neandertal genome from Vindija Cave in Croatia". Science. 358 (6363): 655–658. Bibcode:2017Sci...358..655P. doi:10.1126/science.aao1887. PMC 6185897. PMID 28982794.
  190. ^ Cosimo Posth; Christoph Wißing; Keiko Kitagawa; Luca Pagani; Laura van Holstein; Fernando Racimo; Kurt Wehrberger; Nicholas J. Conard; Claus Joachim Kind; Hervé Bocherens; Johannes Krause (2017). "Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals". Nature Communications. 8: Article number 16046. Bibcode:2017NatCo...816046P. doi:10.1038/ncomms16046. PMC 5500885. PMID 28675384.
  191. ^ Antonio Rosas; Luis Ríos; Almudena Estalrrich; Helen Liversidge; Antonio García-Tabernero; Rosa Huguet; Hugo Cardoso; Markus Bastir; Carles Lalueza-Fox; Marco de la Rasilla; Christopher Dean (2017). "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)". Science. 357 (6357): 1282–1287. Bibcode:2017Sci...357.1282R. doi:10.1126/science.aan6463. PMID 28935804. S2CID 206661070.
  192. ^ Jeremy M. DeSilva (2018). "Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)"". Science. 359 (6380): eaar3611. doi:10.1126/science.aar3611. PMID 29590012. S2CID 4590083.
  193. ^ Antonio Rosas; Luis Ríos; Almudena Estalrrich; Helen Liversidge; Antonio García-Tabernero; Rosa Huguet; Hugo Cardoso; Markus Bastir; Carles Lalueza-Fox; Marco de la Rasilla; Christopher Dean (2018). "Response to Comment on "The growth pattern of Neandertals, reconstructed from a juvenile skeleton from El Sidrón (Spain)"". Science. 359 (6380): eaar3820. doi:10.1126/science.aar3820. PMID 29590013. S2CID 54507895.
  194. ^ Michael Dannemann; Janet Kelso (2017). "The contribution of Neanderthals to phenotypic variation in modern humans". The American Journal of Human Genetics. 101 (4): 578–589. doi:10.1016/j.ajhg.2017.09.010. PMC 5630192. PMID 28985494.
  195. ^ S. de Azevedo; M. F. González; C. Cintas; V. Ramallo; M. Quinto-Sánchez; F. Márquez; T. Hünemeier; C. Paschetta; A. Ruderman; P. Navarro; B. A. Pazos; C. C. Silva de Cerqueira; O. Velan; F. Ramírez-Rozzi; N. Calvo; H. G. Castro; R. R. Paz; R. González-José (2017). "Nasal airflow simulations suggest convergent adaptation in Neanderthals and modern humans". Proceedings of the National Academy of Sciences of the United States of America. 114 (47): 12442–12447. Bibcode:2017PNAS..11412442D. doi:10.1073/pnas.1703790114. PMC 5703271. PMID 29087302.
  196. ^ Andrej A. Evteev; Yann Heuzé (2018). "Impact of sampling strategies and reconstruction protocols in nasal airflow simulations in fossil hominins". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): E4737–E4738. Bibcode:2018PNAS..115E4737E. doi:10.1073/pnas.1804197115. PMC 6003452. PMID 29728461.
  197. ^ S. de Azevedo; M. F. González; C. Cintas; V. Ramallo; M. Quinto-Sánchez; F. Márquez; T. Hünemeier; C. Paschetta; A. Ruderman; P. Navarro; B. A. Pazos; C. C. Silva de Cerqueira; O. Velan; F. Ramírez-Rozzi; N. Calvo; H. G. Castro; R. R. Paz; R. González-José (2018). "Reply to Evteev and Heuzé: How to overcome the problem of modeling respiration departing from bony structures". Proceedings of the National Academy of Sciences of the United States of America. 115 (21): E4739–E4740. Bibcode:2018PNAS..115E4739D. doi:10.1073/pnas.1804796115. PMC 6003456. PMID 29728465.
  198. ^ Juan Marín; Palmira Saladié; Antonio Rodríguez-Hidalgo; Eudald Carbonell (2017). "Neanderthal hunting strategies inferred from mortality profiles within the Abric Romaní sequence". PLOS ONE. 12 (11): e0186970. Bibcode:2017PLoSO..1286970M. doi:10.1371/journal.pone.0186970. PMC 5699840. PMID 29166384.
  199. ^ Laura S. Weyrich; Sebastian Duchene; Julien Soubrier; Luis Arriola; Bastien Llamas; James Breen; Alan G. Morris; Kurt W. Alt; David Caramelli; Veit Dresely; Milly Farrell; Andrew G. Farrer; Michael Francken; Neville Gully; Wolfgang Haak; Karen Hardy; Katerina Harvati; Petra Held; Edward C. Holmes; John Kaidonis; Carles Lalueza-Fox; Marco de la Rasilla; Antonio Rosas; Patrick Semal; Arkadiusz Soltysiak; Grant Townsend; Donatella Usai; Joachim Wahl; Daniel H. Huson; Keith Dobney; Alan Cooper (2017). "Neanderthal behaviour, diet, and disease inferred from ancient DNA in dental calculus". Nature. 544 (7650): 357–361. Bibcode:2017Natur.544..357W. doi:10.1038/nature21674. PMID 28273061. S2CID 4457717.
  200. ^ Philippe Charlier; Frédérick Gaultier; Geneviève Héry-Arnaud (2019). "Interbreeding between Neanderthals and modern humans: Remarks and methodological dangers of a dental calculus microbiome analysis". Journal of Human Evolution. 126: 124–126. Bibcode:2019JHumE.126..124C. doi:10.1016/j.jhevol.2018.06.007. PMID 30029803. S2CID 51704850.
  201. ^ Jean-Jacques Hublin; Abdelouahed Ben-Ncer; Shara E. Bailey; Sarah E. Freidline; Simon Neubauer; Matthew M. Skinner; Inga Bergmann; Adeline Le Cabec; Stefano Benazzi; Katerina Harvati; Philipp Gunz (2017). "New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens" (PDF). Nature. 546 (7657): 289–292. Bibcode:2017Natur.546..289H. doi:10.1038/nature22336. PMID 28593953. S2CID 256771372.
  202. ^ Daniel Richter; Rainer Grün; Renaud Joannes-Boyau; Teresa E. Steele; Fethi Amani; Mathieu Rué; Paul Fernandes; Jean-Paul Raynal; Denis Geraads; Abdelouahed Ben-Ncer; Jean-Jacques Hublin; Shannon P. McPherron (2017). "The age of the hominin fossils from Jebel Irhoud, Morocco, and the origins of the Middle Stone Age". Nature. 546 (7657): 293–296. Bibcode:2017Natur.546..293R. doi:10.1038/nature22335. PMID 28593967. S2CID 205255853.
  203. ^ K. E. Westaway; J. Louys; R. Due Awe; M. J. Morwood; G. J. Price; J.-x. Zhao; M. Aubert; R. Joannes-Boyau; T. M. Smith; M. M. Skinner; T. Compton; R. M. Bailey; G. D. van den Bergh; J. de Vos; A. W. G. Pike; C. Stringer; E. W. Saptomo; Y. Rizal; J. Zaim; W. D. Santoso; A. Trihascaryo; L. Kinsley; B. Sulistyanto (2017). "An early modern human presence in Sumatra 73,000–63,000 years ago" (PDF). Nature. 548 (7667): 322–325. Bibcode:2017Natur.548..322W. doi:10.1038/nature23452. PMID 28792933. S2CID 4398895.
  204. ^ Chris Clarkson; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lynley Wallis; Mike Smith; Richard G. Roberts; Elspeth Hayes; Kelsey Lowe; Xavier Carah; S. Anna Florin; Jessica McNeil; Delyth Cox; Lee J. Arnold; Quan Hua; Jillian Huntley; Helen E. A. Brand; Tiina Manne; Andrew Fairbairn; James Shulmeister; Lindsey Lyle; Makiah Salinas; Mara Page; Kate Connell; Gayoung Park; Kasih Norman; Tessa Murphy; Colin Pardoe (2017). "Human occupation of northern Australia by 65,000 years ago". Nature. 547 (7663): 306–310. Bibcode:2017Natur.547..306C. doi:10.1038/nature22968. hdl:2440/107043. PMID 28726833. S2CID 205257212.
  205. ^ Jim Allen (2017). "Yes, Virginia, there is a Santa Claus; He just doesn't bring presents to children who don't believe in him". Australian Archaeology. 83 (3): 163–165. doi:10.1080/03122417.2017.1408535. S2CID 148730099.
  206. ^ Chris Clarkson; Richard G. Roberts; Zenobia Jacobs; Ben Marwick; Richard Fullagar; Lee J. Arnold; Quan Hua (2018). "Reply to comments on Clarkson et al. (2017) 'Human occupation of northern Australia by 65,000 years ago'". Australian Archaeology. 84 (1): 84–89. doi:10.1080/03122417.2018.1462884. S2CID 150073484.
  207. ^ James F. O'Connell; Jim Allen; Martin A. J. Williams; Alan N. Williams; Chris S. M. Turney; Nigel A. Spooner; Johan Kamminga; Graham Brown; Alan Cooper (2018). "When did Homo sapiens first reach Southeast Asia and Sahul?". Proceedings of the National Academy of Sciences of the United States of America. 115 (34): 8482–8490. Bibcode:2018PNAS..115.8482O. doi:10.1073/pnas.1808385115. PMC 6112744. PMID 30082377.
  208. ^ Dorothée G. Drucker; Yuichi I. Naito; Stéphane Péan; Sandrine Prat; Laurent Crépin; Yoshito Chikaraishi; Naohiko Ohkouchi; Simon Puaud; Martina Lázničková-Galetová; Marylène Patou-Mathis; Aleksandr Yanevich; Hervé Bocherens (2017). "Isotopic analyses suggest mammoth and plant in the diet of the oldest anatomically modern humans from far southeast Europe". Scientific Reports. 7 (1): Article number 6833. Bibcode:2017NatSR...7.6833D. doi:10.1038/s41598-017-07065-3. PMC 5533724. PMID 28754955.
  209. ^ Ascanio D. Rincón; Andrés Solórzano; H. Gregory McDonald & Mónica Núñez Flores (2017). "Baraguatherium takumara, gen. et sp. nov., the earliest mylodontoid sloth (early Miocene) from northern South America". Journal of Mammalian Evolution. 24 (2): 179–191. doi:10.1007/s10914-016-9328-y. S2CID 23667414.
  210. ^ Germán Montoya-Sanhueza; Karen Moreno; René Bobe; Matthew T. Carrano; Marcelo García; Alexandre Corgne (2017). "Peltephilidae and Mesotheriidae (Mammalia) from late Miocene strata of Northern Chilean Andes, Caragua". Journal of South American Earth Sciences. 75: 51–65. Bibcode:2017JSAES..75...51M. doi:10.1016/j.jsames.2017.01.009.
  211. ^ Luciano Brambilla; Damián Alberto Ibarra (2017). "A new species of Eutatus Gervais (Xenarthra, Dasypodidae) from the Late Pleistocene of the Northern Pampean Region, Argentina". Palaeontologia Electronica. 20 (1): Article number 20.1.13A. doi:10.26879/676.
  212. ^ Claudia M. R. Herrera; Jaime E. Powell; Graciela I. Esteban; Cecilia del Papa (2017). "A New Eocene Dasypodid with Caniniforms (Mammalia, Xenarthra, Cingulata) from Northwest Argentina". Journal of Mammalian Evolution. 24 (3): 275–288. doi:10.1007/s10914-016-9345-x. hdl:11336/61883. S2CID 2802243.
  213. ^ H. Gregory McDonald; James C. Chatters; Timothy J. Gaudin (2017). "A new genus of megalonychid ground sloth (Mammalia, Xenarthra) from the late Pleistocene of Quintana Roo, Mexico". Journal of Vertebrate Paleontology. 37 (3): e1307206. Bibcode:2017JVPal..37E7206M. doi:10.1080/02724634.2017.1307206. S2CID 90414512.
  214. ^ Alfredo Eduardo Zurita; Martín Zamorano; Gustavo Juan Scillato-Yané; Sergio Fidel; Martín Iriondo; David D. Gillette (2017). "A new species of Panochthus Burmeister (Xenarthra, Cingulata, Glyptodontidae) from the Pleistocene of the Eastern Cordillera, Bolivia". Historical Biology: An International Journal of Paleobiology. 29 (8): 1076–1088. Bibcode:2017HBio...29.1076Z. doi:10.1080/08912963.2016.1278443. hdl:11336/56640. S2CID 91031708.
  215. ^ Fernando A. Sedor; Édison V. Oliveira; David D. Silva; Luiz A. Fernandes; Renata F. Cunha; Ana M. Ribeiro & Eliseu V. Dia (2017). "A New South American Paleogene Land Mammal Fauna, Guabirotuba Formation (Southern Brazil)". Journal of Mammalian Evolution. 24 (1): 39–55. doi:10.1007/s10914-016-9364-7. S2CID 14010727.
  216. ^ Bruce J. Shockey (2017). "New early diverging cingulate (Xenarthra: Peltephilidae) from the Late Oligocene of Bolivia and considerations regarding the origin of crown Xenarthra". Bulletin of the Peabody Museum of Natural History. 58 (2): 371–396. doi:10.3374/014.058.0201. S2CID 214641639.
  217. ^ Sarah R. Stinnesbeck; Eberhard Frey; Jerónimo Avíles Olguín; Wolfgang Stinnesbeck; Patrick Zell; Heinrich Mallison; Arturo González González; Eugenio Aceves Núñez; Adriana Velázquez Morlet; Alejandro Terrazas Mata; Martha Benavente Sanvicente; Fabio Hering; Carmen Rojas Sandoval (2017). "Xibalbaonyx oviceps, a new megalonychid ground sloth (Folivora, Xenarthra) from the Late Pleistocene of the Yucatán Peninsula, Mexico, and its paleobiogeographic significance". PalZ. 91 (2): 245–271. Bibcode:2017PalZ...91..245S. doi:10.1007/s12542-017-0349-5. S2CID 134188352.
  218. ^ H. Gregory McDonald; Oscar Carranza-Castañeda (2017). "Increased xenarthran diversity of the Great American Biotic Interchange: a new genus and species of ground sloth (Mammalia, Xenarthra, Megalonychidae) from the Hemphillian (late Miocene) of Jalisco, Mexico". Journal of Paleontology. 91 (5): 1069–1082. Bibcode:2017JPal...91.1069M. doi:10.1017/jpa.2017.45. S2CID 133770632.
  219. ^ Shi-Qi Wang; Yu Li; Jaroon Duangkrayom; Xiang-Wen Yang; Wen He; Shan-Qin Chen (2017). "A new species of Gomphotherium (Proboscidea, Mammalia) from China and the evolution of Gomphotherium in Eurasia". Journal of Vertebrate Paleontology. 37 (3): e1318284. Bibcode:2017JVPal..37E8284W. doi:10.1080/02724634.2017.1318284. S2CID 90593535.
  220. ^ Manja Voss; Silvia Sorbi; Daryl P. Domning (2017). "Morphological and systematic re-assessment of the late Oligocene "Halitherium" bellunense reveals a new crown group genus of Sirenia". Acta Palaeontologica Polonica. 62 (1): 163–172. doi:10.4202/app.00287.2016.
  221. ^ Manja Voss & Oliver Hampe (2017). "Evidence for two sympatric sirenian species (Mammalia, Tethytheria) in the early Oligocene of Central Europe". Journal of Paleontology. 91 (2): 337–367. Bibcode:2017JPal...91..337V. doi:10.1017/jpa.2016.147. S2CID 89899052.
  222. ^ Daryl P. Domning; Geoffrey J. Heal; Silvia Sorbi (2017). "Libysiren sickenbergi, gen. et sp. nov.: a new sirenian (Mammalia, Protosirenidae) from the middle Eocene of Libya". Journal of Vertebrate Paleontology. 37 (2): e1299158. Bibcode:2017JVPal..37E9158D. doi:10.1080/02724634.2017.1299158. S2CID 89768597.
  223. ^ Shi-Qi Wang; Haruo Saegusa; Jaroon Duangkrayom; Wen He; Shan-Qin Chen (2017). "A new species of Tetralophodon from the Linxia Basin and the biostratigraphic significance of tetralophodont gomphotheres from the Upper Miocene of northern China". Palaeoworld. 26 (4): 703–717. doi:10.1016/j.palwor.2017.03.005.
  224. ^ Nicholas J. Czaplewski; Kenneth E. Campbell, Jr. (2017). "Late Miocene Bats from the Jurua River, State of Acre, Brazil, with a Description of a New Genus of Thyropteridae (Chiroptera, Mammalia)" (PDF). Contributions in Science. 525: 55–60. doi:10.5962/p.318347. S2CID 51071393.[permanent dead link]
  225. ^ Gregg F. Gunnell; Richard Smith; Thierry Smith (2017). "33 million year old Myotis (Chiroptera, Vespertilionidae) and the rapid global radiation of modern bats". PLOS ONE. 12 (3): e0172621. Bibcode:2017PLoSO..1272621G. doi:10.1371/journal.pone.0172621. PMC 5342209. PMID 28273112.
  226. ^ a b Vicente D. Crespo; Paloma Sevilla; Samuel Mansino; Plinio Montoya; Francisco Javier Ruiz-Sánchez (2017). "Bats from the classical site of Venta del Moro (Late Miocene, Eastern Spain)". Historical Biology: An International Journal of Paleobiology. 30 (3): 317–326. doi:10.1080/08912963.2016.1277995. S2CID 90270154.
  227. ^ Suzanne J. Hand; Bernard Sigé (2017). "A new archaic bat (Chiroptera: Archaeonycteridae) from an Early Eocene forest in the Paris Basin". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 227–236. doi:10.1080/08912963.2017.1297435. S2CID 91146624.
  228. ^ Peter D. Heintzman; Grant D. Zazula; Ross D.E. MacPhee; Eric Scott; James A. Cahill; Brianna K. McHorse; Joshua D. Kapp; Mathias Stiller; Matthew J. Wooller; Ludovic Orlando; John Southon; Duane G. Froese; Beth Shapiro (2017). "A new genus of horse from Pleistocene North America". eLife. 6: e29944. doi:10.7554/eLife.29944. PMC 5705217. PMID 29182148.
  229. ^ Bin Bai (2017). "Eocene Pachynolophinae (Perissodactyla, Palaeotheriidae) from China, and their palaeobiogeographical implications". Palaeontology. 60 (6): 837–852. Bibcode:2017Palgy..60..837B. doi:10.1111/pala.12319. S2CID 134013391.
  230. ^ Bin Bai (2022). "Reappraisal of some perissodacyl fossils from the Middle Eocene of the Lijiang Basin, Yunnan, China with a revision of tapiroid Diplolophodon". Vertebrata PalAsiatica. 61 (1): 26–42. doi:10.19615/j.cnki.2096-9899.220721.
  231. ^ Jean-Albert Remy (2017). "Critical comments on the genus Propachynolophus Lemoine, 1891 (Mammalia, Perissodactyla, Equoidea)". Palæovertebrata. 41 (1): e3. doi:10.18563/pv.41.1.e3.
  232. ^ Yong-Xiang Li; Yun-Xiang Zhang; Ji Li; Zhi-Chao Li; Kun Xie (2017). "New fossils of paraceratheres (Perissodactyla, Mammalia) from the Early Oligocene of the Lanzhou Basin, Gansu Province, China". Vertebrata PalAsiatica. 55 (4): 367–381. doi:10.19615/j.cnki.1000-3118.170922.
  233. ^ Constance Bronnert; Emmanuel Gheerbrant; Marc Godinot; Grégoire Métais (2017). "A primitive perissodactyl (Mammalia) from the early Eocene of Le Quesnoy (MP7, France)". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 237–250. doi:10.1080/08912963.2017.1341502. S2CID 90407317.
  234. ^ Naoto Handa; Masato Nakatsukasa; Yutaka Kunimatsu; Hideo Nakaya (2017). "A new Elasmotheriini (Perissodactyla, Rhinocerotidae) from the upper Miocene of Samburu Hills and Nakali, northern Kenya". Geobios. 50 (3): 197–209. Bibcode:2017Geobi..50..197H. doi:10.1016/j.geobios.2017.04.002.
  235. ^ a b Denis Geraads (2019). "A reassessment of the Bovidae (Mammalia) from the Nawata Formation of Lothagam, Kenya, and the late Miocene diversification of the family in Africa". Journal of Systematic Palaeontology. 17 (2): 169–182. Bibcode:2019JSPal..17..169G. doi:10.1080/14772019.2017.1403493. S2CID 90461071.
  236. ^ Jean-Renaud Boisserie; Mathieu Schuster; Mark J. Beech; Andrew Hill; Faysal Bibi (2017). "A new species of hippopotamine (Cetartiodactyla, Hippopotamidae) from the late Miocene Baynunah Formation, Abu Dhabi, United Arab Emirates". Palæovertebrata. 41 (1): e2. doi:10.18563/pv.41.1.e2.
  237. ^ Bibi, Faysal; Rowan, John; Reed, Kaye (2017). "Late Pliocene Bovidae from Ledi-Geraru (Lower Awash Valley, Ethiopia) and their implications for Afar paleoecology". Journal of Vertebrate Paleontology. 37 (4): e1337639. Bibcode:2017JVPal..37E7639B. doi:10.1080/02724634.2017.1337639. S2CID 134314018.
  238. ^ Roberto Rozzi (2017). "A new extinct dwarfed buffalo from Sulawesi and the evolution of the subgenus Anoa: An interdisciplinary perspective". Quaternary Science Reviews. 157: 188–205. Bibcode:2017QSRv..157..188R. doi:10.1016/j.quascirev.2016.12.011.
  239. ^ a b c Martin Pickford (2017). Revision of "peccary-like" Suoidea (Artiodactyla: Mammalia) from the Neogene of the Old World. Münchner Geowissenschaftliche Abhandlungen Reihe A: Geologie und Paläontologie. Vol. 46. pp. 1–144. ISBN 978-3-89937-223-6.
  240. ^ Jean-Renaud Boisserie; Gen Suwa; Berhane Asfaw; Fabrice Lihoreau; Raymond L. Bernor; Shigehiro Katoh; Yonas Beyene (2017). "Basal hippopotamines from the upper Miocene of Chorora, Ethiopia". Journal of Vertebrate Paleontology. 37 (3): e1297718. Bibcode:2017JVPal..37E7718B. doi:10.1080/02724634.2017.1297718. S2CID 133844851.
  241. ^ María Ríos; Israel M. Sánchez; Jorge Morales (2017). "A new giraffid (Mammalia, Ruminantia, Pecora) from the late Miocene of Spain, and the evolution of the sivathere-samothere lineage". PLOS ONE. 12 (11): e0185378. Bibcode:2017PLoSO..1285378R. doi:10.1371/journal.pone.0185378. PMC 5665556. PMID 29091914.
  242. ^ Evelyne Crégut-Bonnoure; Evangelia Tsoukala (2017). "The Late Pliocene Bovidae and Cervidae (Mammalia) of Milia (Grevena, Macedonia, Greece)". Quaternary International. 445: 215–249. Bibcode:2017QuInt.445..215C. doi:10.1016/j.quaint.2016.10.043.
  243. ^ a b c Paul C. Murphey; Thomas S. Kelly (2017). "Mammals from the earliest Uintan (middle Eocene) Turtle Bluff Member, Bridger Formation, southwestern Wyoming, USA, Part 2: Apatotheria, Lipotyphla, Carnivoramorpha, Condylartha, Dinocerata, Perissodactyla and Artiodactyla". Palaeontologia Electronica. 20 (2): Article number 20.2.29A. doi:10.26879/720.
  244. ^ Manuela Aiglstorfer; Loïc Costeur; Bastien Mennecart; Elmar P. J. Heizmann (2017). "Micromeryx? eiselei—A new moschid species from Steinheim am Albuch, Germany, and the first comprehensive description of moschid cranial material from the Miocene of Central Europe". PLOS ONE. 12 (10): e0185679. Bibcode:2017PLoSO..1285679A. doi:10.1371/journal.pone.0185679. PMC 5642927. PMID 29036194.
  245. ^ Sarah R. Stinnesbeck; Eberhard Frey; Wolfgang Stinnesbeck; Jeronimo Avíles Olguínc; Patrick Zell; Alejandro Terrazas Mata; Martha Benavente Sanvicente; Arturo González González; Eugenio Acevez Nuñez (2017). "A new fossil peccary from the Pleistocene-Holocene boundary of the eastern Yucatán Peninsula, Mexico". Journal of South American Earth Sciences. 77: 341–349. Bibcode:2017JSAES..77..341S. doi:10.1016/j.jsames.2016.11.003. S2CID 133386346.
  246. ^ Blaine W. Schubert; Joshua X. Samuels; James C. Chatters; Joaquin Arroyo-Cabrales (2020). "Muknalia minima from the Yucatán of Mexico is synonymous with the collared peccary, Pecari tajacu (Artiodactyla: Tayassuidae)". Open Quaternary. 6 (1): Article 8. doi:10.5334/oq.84.
  247. ^ Sarah R. Stinnesbeck; Wolfgang Stinnesbeck; Eberhard Frey; Jerónimo Avilés Olguín; Arturo H. González González (2021). "Comment on Schubert et al. 2020. Muknalia minima from the Yucatán of Mexico is synonymous with the collared peccary, Pecari tajacu (Artiodactyla: Tayassuidae). Open Quaternary, 6: 8, pp. 1–9. DOI: doi.org/10.5334/oq.84". Open Quaternary. 7 (1): Article 2. doi:10.5334/oq.89.
  248. ^ Blaine W. Schubert; Joshua X. Samuels; James C. Chatters; Joaquin Arroyo-Cabrales (2021). "Muknalia is a Collared Peccary (Pecari tajacu): A Reply to Stinnesbeck et al". Open Quaternary. 7 (1): Article 3. doi:10.5334/oq.98.
  249. ^ Grégoire Métais; Bastien Mennecart; Ghazala Roohi (2017). "A new assemblage of stem pecoran ruminants from the Oligocene Chitarwata Formation, Bugti Hills, Baluchistan, Pakistan: paleoenvironmental and paleobiogeographic implications". Journal of Asian Earth Sciences. 136: 40–49. Bibcode:2017JAESc.136...40M. doi:10.1016/j.jseaes.2016.09.009.
  250. ^ Evelyne Crégut-Bonnoure; Evangelia Tsoukala (2017). "The Pliocene Artiodactyla and Proboscidea (Mammalia) from Gephyra (lower Axios valley, Macedonia, Greece). Discovery of a new boselaphine". Quaternary International. 445: 200–214. Bibcode:2017QuInt.445..200C. doi:10.1016/j.quaint.2016.10.022.
  251. ^ Roman Croitor (2017). "Description of a new deer species (Cervidae, Mammalia) from the Early Pliocene of Eastern Europe, with a review of early dispersals and palaeobiogeography of the subfamily Cervinae" (PDF). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (1): 85–108. doi:10.1127/njgpa/2017/0630. S2CID 49228618. Archived from the original (PDF) on 2017-09-16. Retrieved 2017-09-16.
  252. ^ Rodrigo Parisi Dutra; Daniel de Melo Casali; Rafaela Velloso Missagia; Germán Mariano Gasparini; Fernando Araujo Perini; Mario Alberto Cozzuol (2017). "Phylogenetic Systematics of Peccaries (Tayassuidae: Artiodactyla) and a Classification of South American Tayassuids". Journal of Mammalian Evolution. 24 (3): 345–358. doi:10.1007/s10914-016-9347-8. hdl:11336/54840. S2CID 27963274.
  253. ^ Georgios Lazaridis; Dimitris S. Kostopoulos; George Lyras; Socrates Roussiakis (2017). "A new Late Miocene ovibovine-like bovid (Bovidae, Mammalia) from the Kassandra Peninsula (Chalkidiki, Northern Greece) and implications to the phylogeography of the group". PalZ. 91 (3): 427–437. Bibcode:2017PalZ...91..427L. doi:10.1007/s12542-017-0360-x. S2CID 90916164.
  254. ^ Hiroto Ichishima; Adolpho H. Augustin; Takashi Toyofuku; Hiroshi Kitazato (2017). "A new species of Africanacetus (Odontoceti: Ziphiidae) found on the deep ocean floor off the coast of Brazil". Deep Sea Research Part II: Topical Studies in Oceanography. 146: 68–81. Bibcode:2017DSRII.146...68I. doi:10.1016/j.dsr2.2016.12.002.
  255. ^ Ismael Miján; Stephen Louwye; Olivier Lambert (2017). "A new Beneziphius beaked whale from the ocean floor off Galicia, Spain and biostratigraphic reassessment of the type species". Acta Palaeontologica Polonica. 62 (1): 211–220. doi:10.4202/app.00309.2016. hdl:1854/LU-8538184.
  256. ^ Olivier Lambert; Giovanni Bianucci; Mario Urbina; Jonathan H. Geisler (2017). "A new inioid (Cetacea, Odontoceti, Delphinida) from the Miocene of Peru and the origin of modern dolphin and porpoise families". Zoological Journal of the Linnean Society. 179 (4): 919–946. doi:10.1111/zoj.12479 (inactive 1 November 2024).{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  257. ^ Jonathan H. Geisler; Robert W. Boessenecker; Mace Brown; Brian L. Beatty (2017). "The Origin of Filter Feeding in Whales". Current Biology. 27 (13): 2036–2042.e2. Bibcode:2017CBio...27E2036G. doi:10.1016/j.cub.2017.06.003. PMID 28669761. S2CID 36765725.
  258. ^ Alexandra T. Boersma; Matthew R. McCurry; Nicholas D. Pyenson (2017). "A new fossil dolphin Dilophodelphis fordycei provides insight into the evolution of supraorbital crests in Platanistoidea (Mammalia, Cetacea)". Royal Society Open Science. 4 (5): 170022. Bibcode:2017RSOS....470022B. doi:10.1098/rsos.170022. PMC 5451807. PMID 28573006.
  259. ^ Michelangelo Bisconti; Olivier Lambert; Mark Bosselaers (2017). "Revision of "Balaena" belgica reveals a new right whale species, the possible ancestry of the northern right whale, Eubalaena glacialis, and the ages of divergence for the living right whale species". PeerJ. 5: e3464. doi:10.7717/peerj.3464. PMC 5490463. PMID 28663936.
  260. ^ Robert W. Boessenecker; Danielle Fraser; Morgan Churchill; Jonathan H. Geisler (2017). "A toothless dwarf dolphin (Odontoceti: Xenorophidae) points to explosive feeding diversification of modern whales (Neoceti)". Proceedings of the Royal Society B: Biological Sciences. 284 (1861): 20170531. doi:10.1098/rspb.2017.0531. PMC 5577471. PMID 28835549.
  261. ^ Olivier Lambert; Christian de Muizon; Elisa Malinverno; Claudio Di Celma; Mario Urbina; Giovanni Bianucci (2017). "A new odontocete (toothed cetacean) from the Early Miocene of Peru expands the morphological disparity of extinct heterodont dolphins". Journal of Systematic Palaeontology. 16 (12): 981–1016. doi:10.1080/14772019.2017.1359689. hdl:11568/891482. S2CID 90193360.
  262. ^ Alberto Collareta; Olivier Lambert; Christian de Muizon; Mario Urbina; Giovanni Bianucci (2017). "Koristocetus pescei gen. et sp. nov., a diminutive sperm whale (Cetacea: Odontoceti: Kogiidae) from the late Miocene of Peru". Fossil Record. 20 (2): 259–278. Bibcode:2017FossR..20..259C. doi:10.5194/fr-20-259-2017. hdl:11568/891486.
  263. ^ Olivier Lambert; Manuel Martínez-Cáceres; Giovanni Bianucci; Claudio Di Celma; Rodolfo Salas-Gismondi; Etienne Steurbaut; Mario Urbina; Christian de Muizon (2017). "Earliest Mysticete from the Late Eocene of Peru Sheds New Light on the Origin of Baleen Whales". Current Biology. 27 (10): 1535–1541.e2. Bibcode:2017CBio...27E1535L. doi:10.1016/j.cub.2017.04.026. hdl:11581/396095. PMID 28502655. S2CID 23858246.
  264. ^ Jorge Vélez-Juarbe (2017). "A new stem odontocete from the late Oligocene Pysht Formation in Washington State, U.S.A.". Journal of Vertebrate Paleontology. 37 (5): e1366916. Bibcode:2017JVPal..37E6916V. doi:10.1080/02724634.2017.1366916. S2CID 90151706.
  265. ^ Klaas Post; Stephen Louwye; Olivier Lambert (2017). "Scaldiporia vandokkumi, a new pontoporiid (Mammalia, Cetacea, Odontoceti) from the Late Miocene to earliest Pliocene of the Westerschelde estuary (The Netherlands)". PeerJ. 5: e3991. doi:10.7717/peerj.3991. PMC 5671118. PMID 29109917.
  266. ^ Felix G. Marx; Olivier Lambert; Christian de Muizon (2017). "A new Miocene baleen whale from Peru deciphers the dawn of cetotheriids". Royal Society Open Science. 4 (9): 170560. Bibcode:2017RSOS....470560M. doi:10.1098/rsos.170560. PMC 5627101. PMID 28989761.
  267. ^ Yoshihiro Tanaka; Juan Abella; Gabriel Aguirre-Fernández; Maria Gregori; R. Ewan Fordyce (2017). "A new tropical Oligocene dolphin from Montañita/Olón, Santa Elena, Ecuador". PLOS ONE. 12 (12): e0188380. Bibcode:2017PLoSO..1288380T. doi:10.1371/journal.pone.0188380. PMC 5737981. PMID 29261688.
  268. ^ a b c Jon A. Baskin (2017). "Additional carnivorans from the early Hemingfordian Miller Local Fauna, Florida". Journal of Vertebrate Paleontology. 37 (2): e1293069. Bibcode:2017JVPal..37E3069B. doi:10.1080/02724634.2017.1293069. S2CID 90182619.
  269. ^ Lamjed Amri; Saverio Bartolini Lucenti; Moncef Saïd Mtimet; Narjess Karoui-Yaakoub; Sergio Ros-Montoya; Maria-Patrocinio Espigares; Mabrouk Boughdiri; Nebiha Bel Haj Ali; Bienvenido Martínez-Navarro (2017). "Canis othmanii sp. nov. (Carnivora, Canidae) from the early Middle Pleistocene site of Wadi Sarrat (Tunisia)". Comptes Rendus Palevol. 16 (7): 774–782. Bibcode:2017CRPal..16..774A. doi:10.1016/j.crpv.2017.05.004.
  270. ^ Jorge Velez-Juarbe (2017). "Eotaria citrica, sp. nov., a new stem otariid from the "Topanga" formation of Southern California". PeerJ. 5: e3022. doi:10.7717/peerj.3022. PMC 5326546. PMID 28243536.
  271. ^ Manuel J. Salesa; Gema Siliceo; Mauricio Antón; Stéphane Peigné; Jorge Morales (2019). "Functional and systematic implications of the postcranial anatomy of a late Miocene feline (Carnivora, Felidae) from Batallones-1 (Madrid, Spain)". Journal of Mammalian Evolution. 26 (1): 101–131. doi:10.1007/s10914-017-9414-9. hdl:10261/225344. S2CID 19719645.
  272. ^ Min Zhu; Yaling Yan; Yihong Liu; Zhilu Tang; Dagong Qin; Changzhu Jin (2017). "The new Carnivore remains from the Early Pleistocene Yanliang Gigantopithecus fauna, Guangxi, South China". Quaternary International. 434, Part A: 17–24. Bibcode:2017QuInt.434...17Z. doi:10.1016/j.quaint.2015.01.009.
  273. ^ L. de Bonis; J. Abella; G. Merceron; D.R. Begun (2017). "A new late Miocene ailuropodine (Giant Panda) from Rudabánya (North-central Hungary)". Geobios. 50 (5–6): 413–421. Bibcode:2017Geobi..50..413D. doi:10.1016/j.geobios.2017.09.003.
  274. ^ Leonard Dewaele; Eli Amson; Olivier Lambert; Stephen Louwye (2017). "Reappraisal of the extinct seal "Phoca" vitulinoides from the Neogene of the North Sea Basin, with bearing on its geological age, phylogenetic affinities, and locomotion". PeerJ. 5: e3316. doi:10.7717/peerj.3316. PMC 5436577. PMID 28533965.
  275. ^ Alain Argant; Jean-Philip Brugal (2017). "The cave lion Panthera (Leo) spelaea and its evolution: Panthera spelaea intermedia nov. subspecies" (PDF). Acta Zoologica Cracoviensia. 60 (2): 59–104. doi:10.3409/azc.60_2.59.
  276. ^ Yu Li; Nikolai Spassov (2017). "A new species of Paramachaerodus (Mammalia, Carnivora, Felidae) from the late Miocene of China and Bulgaria, and revision of Promegantereon Kretzoi, 1938 and Paramachaerodus Pilgrim, 1913". PalZ. 91 (3): 409–426. Bibcode:2017PalZ...91..409L. doi:10.1007/s12542-017-0371-7. S2CID 134847521.
  277. ^ Xiaoming Wang; Camille Grohé; Denise F. Su; Stuart C. White; Xueping Ji; Jay Kelley; Nina G. Jablonski; Tao Deng; Youshan You; Xin Yang (2017). "A new otter of giant size, Siamogale melilutra sp. nov. (Lutrinae: Mustelidae: Carnivora), from the latest Miocene Shuitangba site in north-eastern Yunnan, south-western China, and a total-evidence phylogeny of lutrines". Journal of Systematic Palaeontology. 16 (1): 39–65. doi:10.1080/14772019.2016.1267666. S2CID 58892181.
  278. ^ S.J. Rahmat; I.A. Koretsky; J.E. Osborne; A.A. Alford (2017). "New Miocene Monachinae from the western shore of the Chesapeake Bay (Maryland, USA)". Vestnik Zoologii. 51 (3): 221–242. doi:10.1515/vzoo-2017-0029 (inactive 1 November 2024). S2CID 90197324.{{cite journal}}: CS1 maint: DOI inactive as of November 2024 (link)
  279. ^ a b c d Wen-Yu Wu; Lawrence J. Flynn (2017). "The Lagomorphs (Ochotonidae, Leporidae) of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 31–57. doi:10.1007/978-94-024-1050-1_4. ISBN 978-94-024-1049-5.
  280. ^ Chiara Angelone; Stanislav Čermák; Lorenzo Rook (2017). "New insights on Paludotona, an insular endemic lagomorph (Mammalia) from the Tusco-Sardinian Palaeobioprovince (Italy, Turolian, late Miocene)". Rivista Italiana di Paleontologia e Stratigrafia. 123 (3): 455–473. doi:10.13130/2039-4942/9082.
  281. ^ Margarita Erbajeva; Bayarmaa Baatarjav; Gudrun Daxner-Höck; Lawrence J. Flynn (2017). "Occurrences of Sinolagomys (Lagomorpha) from the Valley of Lakes (Mongolia)". Palaeobiodiversity and Palaeoenvironments. 97 (1): 11–24. Bibcode:2017PdPe...97...11E. doi:10.1007/s12549-016-0262-z. PMC 5367695. PMID 28450962.
  282. ^ a b Diego H. Verzi; A. Itatí Olivares; Cecilia C. Morgan (2017). "Systematics and evolutionary significance of the small Abrocomidae from the early Miocene of southern South America". Historical Biology: An International Journal of Paleobiology. 29 (3): 411–422. Bibcode:2017HBio...29..411V. doi:10.1080/08912963.2016.1168410. hdl:11336/56470. S2CID 87180597.
  283. ^ Qian Li; Fang-Yuan Mao; Yuan-Qing Wang (2017). "First record of Eocene fossil rodent assemblages from the lower part of the Erden Obo Section, Erlian Basin (Nei Mongol, China) and its biochronological implications". Palaeobiodiversity and Palaeoenvironments. 98 (2): 259–276. doi:10.1007/s12549-017-0303-2. S2CID 134310923.
  284. ^ Valentin Nesin; Oleksandr Kovalchuk (2017). "A new species of jerboa (Mammalia, Rodentia, Allactaga) from the late Miocene of Ukraine". Palaeontologia Electronica. 20 (2): Article number 20.2.25A. doi:10.26879/751.
  285. ^ a b Wen-Yu Wu; Lawrence J. Flynn (2017). "The Hamsters of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 123–137. doi:10.1007/978-94-024-1050-1_10. ISBN 978-94-024-1049-5.
  286. ^ a b c d e William W. Korth; Alan R. Tabrum (2017). "A unique rodent fauna from the Whitneyan (middle Oligocene) of southwestern Montana". Annals of Carnegie Museum. 84 (4): 319–340. doi:10.2992/007.084.0401. S2CID 89650435.
  287. ^ a b c Zhu-Ding Qiu (2017). "Several rarely recorded rodents from the Neogene of China". Vertebrata PalAsiatica. 55 (2): 92–109. doi:10.19615/j.cnki.1000-3118.2017.02.002.
  288. ^ Thomas Mörs; Therese Flink (2017). "Large apeomyine rodents (Mammalia, Eomyidae) from the early Miocene of Echzell, Germany". Historical Biology: An International Journal of Paleobiology. 30 (8): 1102–1111. doi:10.1080/08912963.2017.1338695. S2CID 95003340.
  289. ^ Enric Torres-Roig; Jordi Agustí; Pere Bover; Josep Antoni Alcover (2017). "A new giant cricetine from the basal Pliocene of Mallorca (Balearic Islands, western Mediterranean): biostratigraphic nexus with continental mammal zones". Historical Biology: An International Journal of Paleobiology. 31 (5): 559–573. doi:10.1080/08912963.2017.1377194. S2CID 135302585.
  290. ^ Paloma López-Guerrero; Olivier Maridet; Zhaoqun Zhang; Gudrun Daxner-Höck (2017). "A new species of Argyromys (Rodentia, Mammalia) from the Oligocene of the Valley of Lakes (Mongolia): Its importance for palaeobiogeographical homogeneity across Mongolia, China and Kazakhstan". PLOS ONE. 12 (3): e0172733. Bibcode:2017PLoSO..1272733L. doi:10.1371/journal.pone.0172733. PMC 5362143. PMID 28328975.
  291. ^ a b María E. Pérez; Cecilia M. Deschamps; María G. Vucetich (2018). "Diversity, phylogeny and biogeography of the South American 'cardiomyine' rodents (Hystricognathi, Cavioidea) with a description of two new species". Papers in Palaeontology. 4 (1): 1–19. Bibcode:2018PPal....4....1P. doi:10.1002/spp2.1095. hdl:11336/42361. S2CID 90241240.
  292. ^ Adriana M. Candela; Ricardo A. Bonini (2017). "A new guinea pig (Rodentia, Caviomorpha) from northwestern Argentina: Implications for the origin of the genus Cavia". Journal of Vertebrate Paleontology. 37 (4): e1352591. Bibcode:2017JVPal..37E2591C. doi:10.1080/02724634.2017.1352591. hdl:11336/58708. S2CID 89872825.
  293. ^ Alexey S. Tesakov; Vadim V. Titov; Alexandra N. Simakova; Pavel D. Frolov; Elena V. Syromyatnikova; Sergey V. Kurshakov; Natalia V. Volkova; Yaroslav I. Trikhunkov; Marina V. Sotnikova; Sergey V. Kruskop; Nikita V. Zelenkov; Ekaterina M. Tesakova; Dmitry M. Palatov (2017). "Late Miocene (Early Turolian) vertebrate faunas and associated biotic record of the Northern Caucasus: Geology, palaeoenvironment, biochronology". Fossil Imprint. 73 (3–4): 383–444. doi:10.2478/if-2017-0021. S2CID 27201013.
  294. ^ a b c d e Peter Joniak; Pablo Peláez-Campomanes; Lars W. van den Hoek Ostende; Bora Rojay (2017). "Early Miocene rodents of Gökler (Kazan Basin, Central Anatolia, Turkey)". Historical Biology: An International Journal of Paleobiology. 31 (8): 982–1007. doi:10.1080/08912963.2017.1414211. S2CID 89700699.
  295. ^ Lüzhou Li; Xijun Ni; Xiaoyu Lu; Qiang Li (2017). "First record of Cricetops rodent in the Oligocene of southwestern China". Historical Biology: An International Journal of Paleobiology. 29 (4): 488–494. Bibcode:2017HBio...29..488L. doi:10.1080/08912963.2016.1196686. S2CID 132774387.
  296. ^ Hans de Bruijn (2017). "A new stage in the evolution of the mole rats (Rodentia, Spalacinae) from the Early Miocene of northern Greece". Historical Biology: An International Journal of Paleobiology. 29 (5): 571–575. Bibcode:2017HBio...29..571D. doi:10.1080/08912963.2016.1208193. hdl:1874/347767.
  297. ^ Everett Lindsay (2017). "Democricetodon fejfari sp. nov. and replacement of Cricetidae by Muridae in Siwalik deposits of Pakistan". Fossil Imprint. 73 (3–4): 445–453. doi:10.2478/if-2017-0022. S2CID 91838328.
  298. ^ a b Ansuya Bhandari; Sunil Bajpai; Lawrence J. Flynn; B N Tiwari; Nivedita Mandal (2021). "First Miocene rodents from Kutch, western India". Historical Biology: An International Journal of Paleobiology. 33 (12): 3471–3479. Bibcode:2021HBio...33.3471B. doi:10.1080/08912963.2020.1870970. S2CID 234253921.
  299. ^ Christiane Denys; Thalassa Matthews (2017). "A new Desmodillus (Gerbillinae, Rodentia) species from the early Pliocene site of Langebaanweg (South-western Cape, South Africa)". Palæovertebrata. 41 (1): e1. doi:10.18563/pv.41.1.e1.
  300. ^ a b Myriam Boivin; Laurent Marivaux; Maëva J. Orliac; Francois Pujos; Rodolfo Salas-Gismondi; Julia V. Tejada-Lara; Pierre-Olivier Antoine (2017). "Late middle Eocene caviomorph rodents from Contamana, Peruvian Amazonia". Palaeontologia Electronica. 20 (1): Article number 20.1.19A. doi:10.26879/742. hdl:11336/66430.
  301. ^ a b Burkart Engesser; Daniel Kälin (2017). "Eomys helveticus n. sp. and Eomys schluneggeri n. sp., two new small eomyids of the Chattian (MP 25/MP 26) subalpine Lower Freshwater Molasse of Switzerland" (PDF). Fossil Imprint. 73 (1–2): 213–224. doi:10.1515/if-2017-0012. S2CID 172101167.
  302. ^ Hüseyin Erten (2017). "A new genus and species of Muridae (Rodentia) from the Quaternary deposits of the Denizli Basin, South-western Turkey". Palaeontologia Electronica. 20 (1): Article number 20.1.12A. doi:10.26879/659.
  303. ^ Leonardo Kerber; Marcos César Bissaro Júnior; Francisco R. Negri; Jonas Pereira de Souza-Filho; Edson Guilherme; Annie Schmaltz Hsiou (2017). "A new rodent (Caviomorpha: Dinomyidae) from the upper Miocene of southwestern Brazilian Amazonia". Historical Biology: An International Journal of Paleobiology. 30 (7): 985–993. doi:10.1080/08912963.2017.1327529. S2CID 90876830.
  304. ^ a b Wen-Yu Wu; Lawrence J. Flynn (2017). "Yushe Basin Prometheomyini (Arvicolinae, Rodentia)". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 139–151. doi:10.1007/978-94-024-1050-1_11. ISBN 978-94-024-1049-5.
  305. ^ Qian Li; Yan-Xin Gong; Yuan-Qing Wang (2017). "New dipodid rodents from the Late Eocene of Erden Obo (Nei Mongol, China)". Historical Biology: An International Journal of Paleobiology. 29 (5): 692–703. Bibcode:2017HBio...29..692L. doi:10.1080/08912963.2016.1232406. S2CID 132602246.
  306. ^ Pedro Piñero; Jordi Agustí (2017). "The rodent succession in the Sifón de Librilla section (Fortuna Basin, SE Spain): implications for the Mio-Pliocene boundary in the Mediterranean terrestrial record". Historical Biology: An International Journal of Paleobiology. 31 (3): 279–321. doi:10.1080/08912963.2017.1360876. S2CID 134225343.
  307. ^ María E. Pérez; María C. Vallejo-Pareja; Juan D. Carrillo; Carlos Jaramillo (2017). "A New Pliocene Capybara (Rodentia, Caviidae) from Northern South America (Guajira, Colombia), and its Implications for the Great American Biotic Interchange" (PDF). Journal of Mammalian Evolution. 24 (1): 111–125. doi:10.1007/s10914-016-9356-7. S2CID 30855398.
  308. ^ Zhu-Ding Qiu (2017). "Yushe Squirrels (Sciuridae, Rodentia)". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 59–69. doi:10.1007/978-94-024-1050-1_5. ISBN 978-94-024-1049-5.
  309. ^ Zoran Marković; Wilma Wessels; Andrew A. van de Weerd; Hans de Bruijn (2017). "On a new diatomyid (Rodentia, Mammalia) from the Paleogene of south-east Serbia, the first record of the family in Europe". Palaeobiodiversity and Palaeoenvironments. 98 (3): 459–469. doi:10.1007/s12549-017-0301-4. PMC 6417379. PMID 30956714.
  310. ^ a b c Yuri Kimura; Lawrence J. Flynn; Louis L. Jacobs (2017). "Early late Miocene murine rodents from the upper part of the Nagri Formation, Siwalik Group, Pakistan, with a new fossil calibration point for the tribe Apodemurini (Apodemus/Tokudaia)" (PDF). Fossil Imprint. 73 (1–2): 197–212. doi:10.1515/if-2017-0011. S2CID 171644924.
  311. ^ a b William W. Korth; Alan R. Tabrum (2017). "Rodents (Mammalia) from Diamond O Ranch local fauna, southwestern Montana". Annals of Carnegie Museum. 84 (4): 301–318. doi:10.2992/007.084.0404. S2CID 90065244.
  312. ^ a b Samuel T. Turvey; Jennifer J. Crees; James Hansford; Timothy E. Jeffree; Nick Crumpton; Iwan Kurniawan; Erick Setiyabudi; Thomas Guillerme; Umbu Paranggarimu; Anthony Dosseto; Gerrit D. van den Bergh (2017). "Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution". Proceedings of the Royal Society B: Biological Sciences. 284 (1861): 20171278. doi:10.1098/rspb.2017.1278. PMC 5577490. PMID 28855367.
  313. ^ a b c Laurent Marivaux; Sylvain Adnet; Mohamed Benammi; Rodolphe Tabuce; Johan Yans; Mouloud Benammi (2017). "Earliest Oligocene hystricognathous rodents from the Atlantic margin of northwestern Saharan Africa (Dakhla, Morocco): systematic, paleobiogeographical, and paleoenvironmental implications". Journal of Vertebrate Paleontology. 37 (5): e1357567. Bibcode:2017JVPal..37E7567M. doi:10.1080/02724634.2017.1357567. S2CID 133921627.
  314. ^ a b Zhu-Ding Qiu; Chang-Zhu Jin (2017). "Platacanthomyid remains from the late Cenozoic deposits of East China". Vertebrata PalAsiatica. 55 (4): 315–330. doi:10.19615/j.cnki.1000-3118.170721.
  315. ^ María Carolina Madozzo-Jaén; María Encarnación Pérez (2017). "The most ancient caviine rodent (Hystricognathi, Cavioidea) comes from the late Miocene of Northwest Argentina (South America)". Historical Biology: An International Journal of Paleobiology. 29 (3): 376–383. Bibcode:2017HBio...29..376M. doi:10.1080/08912963.2016.1166360. hdl:11336/61885. S2CID 87935789.
  316. ^ a b Matthijs Freudenthal; Elvira Martín-Suárez (2017). "A revision of European Plesiosminthus (Rodentia, Dipodidae), and new material from the upper Oligocene of Teruel (Spain)". Palaeontologia Electronica. 20 (2): Article number 20.2.41A. doi:10.26879/678.
  317. ^ Shao-Hua Zheng (2017). "The Zokors of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 89–121. doi:10.1007/978-94-024-1050-1_9. ISBN 978-94-024-1049-5.
  318. ^ William W. Korth (2017). "A new tribe of castoroidine beavers from the late Arikareean to Hemphillian (Oligocene–Miocene) of western North America". Acta Palaeontologica Polonica. 62 (2): 249–258. doi:10.4202/app.00339.2017.
  319. ^ Joshua X. Samuels; William W. Korth (2017). "The first Eocene rodents from the Pacific Northwest, USA". Palaeontologia Electronica. 20 (2): Article number 20.2.24A. doi:10.26879/717.
  320. ^ a b c Deborah K. Anderson (2017). "Three New Sciuravids (Rodentia) From the Latest-Early to Middle Eocene of Wyoming: Mosaic Evolution and the Alpha Taxonomy of Sciuravus nitidus". Contributions from the Museum of Paleontology, University of Michigan. 32 (12): 245–258. hdl:2027.42/136782.
  321. ^ Hüseyin Erten (2018). "Spalax denizliensis sp. nov. (Spalacidae, Rodentia) from an Early Pleistocene-aged locality in the Denizli Basin (southwestern Turkey)". Turkish Journal of Zoology. 42 (1): 62–67. doi:10.3906/zoo-1707-35.
  322. ^ Wen-Yu Wu; Lawrence J. Flynn; Zhu-Ding Qiu (2017). "The Murine Rodents of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 179–198. doi:10.1007/978-94-024-1050-1_14. ISBN 978-94-024-1049-5.
  323. ^ Ban-Yue Wang (2017). "Discovery of Yuomys from Altun Shan, Xinjiang, China". Vertebrata PalAsiatica. 55 (3): 227–232. doi:10.19615/j.cnki.1000-3118.2017.03.005.
  324. ^ Qian Li (2019). "Eocene ctenodactyloid rodent assemblages and diversification from Erden Obo, Nei Mongol, China". Historical Biology: An International Journal of Paleobiology. 31 (7): 813–823. Bibcode:2019HBio...31..813L. doi:10.1080/08912963.2017.1395422. S2CID 91103157.
  325. ^ Joan Femenias-Gual; Raef Minwer-Barakat; Judit Marigó; Miquel Poyatos-Moré; Salvador Moyà-Solà (2017). "Agerinia marandati sp. nov., a new early Eocene primate from the Iberian Peninsula, sheds new light on the evolution of the genus Agerinia". PeerJ. 5: e3239. doi:10.7717/peerj.3239. PMC 5410143. PMID 28462042.
  326. ^ Martin Pickford; Brigitte Senut; Dominique Gommery; Sarah Musalizi; Ezra Musiime (2017). "Revision of the Miocene Hominoidea from Moroto I and II, Uganda". Geo-Pal Uganda. 11: 1–30.
  327. ^ Erik R. Seiffert; Doug M. Boyer; John G. Fleagle; Gregg F. Gunnell; Christopher P. Heesy; Jonathan M. G. Perry; Hesham M. Sallam (2017). "New adapiform primate fossils from the late Eocene of Egypt". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 204–226. doi:10.1080/08912963.2017.1306522. S2CID 89631627.
  328. ^ Raef Minwer-Barakat; Judit Marigó; Joan Femenias-Gual; Loïc Costeur; Soledad De Esteban-Trivigno; Salvador Moyà-Solà (2017). "Microchoerus hookeri nov. sp., a new late Eocene European microchoerine (Omomyidae, Primates): New insights on the evolution of the genus Microchoerus". Journal of Human Evolution. 102: 42–66. Bibcode:2017JHumE.102...42M. doi:10.1016/j.jhevol.2016.10.004. PMID 28012463.
  329. ^ Yutaka Kunimatsu; Hiroshi Tsujikawa; Masato Nakatsukasa; Daisuke Shimizu; Naomichi Ogihara; Yasuhiro Kikuchi; Yoshihiko Nakano; Tomo Takano; Naoki Morimoto; Hidemi Ishida (2017). "A new species of Mioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya". Anthropological Science. 125 (2): 59–65. doi:10.1537/ase.170322.
  330. ^ Isaiah Nengo; Paul Tafforeau; Christopher C. Gilbert; John G. Fleagle; Ellen R. Miller; Craig Feibel; David L. Fox; Josh Feinberg; Kelsey D. Pugh; Camille Berruyer; Sara Mana; Zachary Engle; Fred Spoor (2017). "New infant cranium from the African Miocene sheds light on ape evolution". Nature. 548 (7666): 169–174. Bibcode:2017Natur.548..169N. doi:10.1038/nature23456. PMID 28796200. S2CID 4397839.
  331. ^ Christopher C. Gilbert; Biren A. Patel; N. Premjit Singh; Christopher J. Campisano; John G. Fleagle; Kathleen L. Rust; Rajeev Patnaik (2017). "New sivaladapid primate from Lower Siwalik deposits surrounding Ramnagar (Jammu and Kashmir State), India". Journal of Human Evolution. 102: 21–41. Bibcode:2017JHumE.102...21G. doi:10.1016/j.jhevol.2016.10.001. PMID 28012462.
  332. ^ Vivesh V. Kapur; Debasis P. Das; Sunil Bajpai; Guntupalli V.R. Prasad (2017). "First mammal of Gondwanan lineage in the early Eocene of India". Comptes Rendus Palevol. 16 (7): 721–737. Bibcode:2017CRPal..16..721K. doi:10.1016/j.crpv.2017.01.002.
  333. ^ Vivesh V. Kapur; Debasis P. Das; Sunil Bajpai; Guntupalli V.R. Prasad (2017). "Corrigendum to "First Mammal of Gondwanan lineage in the early Eocene of India" [C. R. Palevol, Kapur et al. 16 (2017)]". Comptes Rendus Palevol. 16 (7): 820. Bibcode:2017CRPal..16..820K. doi:10.1016/j.crpv.2017.07.001.
  334. ^ Spencer G. Mattingly; Oscar Sanisidro; K. Christopher Beard (2017). "A new species of Carpolestes (Mammalia, Plesiadapoidea) from the late Paleocene of southern Wyoming: assessing changes in size and shape during the evolution of a key anatomical feature". Historical Biology: An International Journal of Paleobiology. 30 (8): 1031–1042. doi:10.1080/08912963.2017.1328509. S2CID 90479229.
  335. ^ William A. Clemens (2018). "A pantodont (Mammalia) from the latest Puercan North American Land Mammal Age (earliest Paleocene) of the Western Interior, USA". Historical Biology: An International Journal of Paleobiology. 30 (1–2): 183–188. Bibcode:2018HBio...30..183C. doi:10.1080/08912963.2016.1276178. S2CID 132830375.
  336. ^ Andrea Savorelli; Federico Masini; Paul P. A. Mazza; Maria Adelaide Rossi; Silvano Agostini (2017). "New species of Deinogalerix (Mammalia, Eulipotyphla) from the late Miocene of Scontrone (Abruzzo, central Italy)". Palaeontologia Electronica. 20 (1): Article number 20.1.16A. doi:10.26879/672.
  337. ^ a b Steven C. Sweetman; Grant Smith; David M. Martill (2017). "Highly derived eutherian mammals from the earliest Cretaceous of southern Britain". Acta Palaeontologica Polonica. 62 (4): 657–665. doi:10.4202/app.00408.2017.
  338. ^ a b c Jorge Morales; Martin Pickford (2017). "New hyaenodonts (Ferae, Mammalia) from the Early Miocene of Napak (Uganda), Koru (Kenya) and Grillental (Namibia)" (PDF). Fossil Imprint. 73 (3–4): 332–359. doi:10.2478/if-2017-0019. S2CID 197550278.
  339. ^ Floréal Solé; Eric De Bast; Jian Yang; Cheng-Sen Li; Thierry Smith (2017). "The first species of Hapalodectes (Mesonychia, Mammalia) from the middle Paleocene of China (Qianshan Basin, Anhui Province) sheds light on the initial radiation of hapalodectids". Palaeontology. 60 (3): 433–449. Bibcode:2017Palgy..60..433S. doi:10.1111/pala.12293. S2CID 133538533.
  340. ^ Matthew R. Borths; Erik R. Seiffert (2017). "Craniodental and humeral morphology of a new species of Masrasector (Teratodontinae, Hyaenodonta, Placentalia) from the late Eocene of Egypt and locomotor diversity in hyaenodonts". PLOS ONE. 12 (4): e0173527. Bibcode:2017PLoSO..1273527B. doi:10.1371/journal.pone.0173527. PMC 5396875. PMID 28422967.
  341. ^ Javier N. Gelfo; Guillermo M. López; Sergio N. Santillana (2017). "Eocene ungulate mammals from West Antarctica: implications from their fossil record and a new species". Antarctic Science. 29 (5): 445–455. Bibcode:2017AntSc..29..445G. doi:10.1017/S0954102017000244. hdl:11336/56552. S2CID 86868504.
  342. ^ Matthew R. Borths; Nancy J. Stevens (2017). "The first hyaenodont from the late Oligocene Nsungwe Formation of Tanzania: Paleoecological insights into the Paleogene-Neogene carnivore transition". PLOS ONE. 12 (10): e0185301. Bibcode:2017PLoSO..1285301B. doi:10.1371/journal.pone.0185301. PMC 5636082. PMID 29020030.
  343. ^ Daniel A. García-López; Virginia Deraco; Cecilia del Papa (2017). "Fossil mammals of the Quebrada de los Colorados Formation (late middle Eocene) at the locality of La Poma, Salta Province, Argentina". Historical Biology: An International Journal of Paleobiology. 30 (4): 507–517. doi:10.1080/08912963.2017.1299150. hdl:11336/63085. S2CID 89628887.
  344. ^ Marguerite Hugueney; Olivier Maridet (2017). "Evolution of Oligo-Miocene talpids (Mammalia, Talpidae) in Europe: focus on the genera Myxomygale and Percymygale n. gen" (PDF). Historical Biology: An International Journal of Paleobiology. 30 (1–2): 267–275. doi:10.1080/08912963.2017.1282477. S2CID 56440927.
  345. ^ Vicente D. Crespo; Marc Furió; Francisco Javier Ruiz-Sánchez; Plini Montoya (2017). "A new species of Plesiodimylus (Dimylidae, Eulipotyphla, Mammalia) from the Early Miocene of Spain". Historical Biology: An International Journal of Paleobiology. 30 (3): 360–371. doi:10.1080/08912963.2017.1289519. S2CID 89721449.
  346. ^ Mitsuharu Oshima; Yukimitsu Tomida; Takamichi Orihara (2017). "A new species of Plesiosorex (Mammalia, Eulipotyphla) from the Early Miocene of Japan: first record of the genus from East Asia" (PDF). Fossil Imprint. 73 (3–4): 292–299. doi:10.1515/if-2017-0016. S2CID 171784271.
  347. ^ Bárbara Vera Nardoni; Marcelo Reguero; Laureano González-Ruiz (2017). "The Interatheriinae notoungulates from the middle Miocene Collón Curá Formation in Argentina". Acta Palaeontologica Polonica. 62 (4): 845–863. doi:10.4202/app.00373.2017. hdl:11336/56874.
  348. ^ Fang-Yuan Mao; Qian Li; Yuan-Qing Wang; Chuan-Kui Li (2017). "Taizimylus tongi, a new eurymylid (Mammalia, Glires) from the upper Paleocene of Xinjiang, China". Palaeoworld. 26 (3): 519–530. doi:10.1016/j.palwor.2016.12.002.
  349. ^ G. Sansalone; T. Kotsakis; A. H. Schwermann; L. W. Van den Hoek Ostende; P. Piras (2017). "When moles became diggers: Tegulariscaptor gen. nov., from the early Oligocene of south Germany, and the evolution of talpid fossoriality". Journal of Systematic Palaeontology. 16 (8): 645–657. doi:10.1080/14772019.2017.1329235. hdl:11380/1318329. S2CID 90554706.
  350. ^ Ricardo A. Bonini; Gabriela I. Schmidt; Marcelo A. Reguero; Esperanza Cerdeño; Adriana M. Candela; Natalia Solís (2017). "First record of Toxodontidae (Mammalia, Notoungulata) from the late Miocene–early Pliocene of the southern central Andes, NW Argentina". Journal of Paleontology. 91 (3): 566–576. Bibcode:2017JPal...91..566B. doi:10.1017/jpa.2016.160. hdl:11336/49805. S2CID 132542112.
  351. ^ Lawrence J. Flynn; Wen-Yu Wu (2017). "The Lipotyphla of Yushe Basin". In Lawrence J. Flynn; Wen-Yu Wu (eds.). Late Cenozoic Yushe Basin, Shanxi Province, China: Geology and Fossil Mammals. Vertebrate Paleobiology and Paleoanthropology. Springer. pp. 11–26. doi:10.1007/978-94-024-1050-1_2. ISBN 978-94-024-1049-5.
  352. ^ Roi Maor; Tamar Dayan; Henry Ferguson-Gow; Kate E. Jones (2017). "Temporal niche expansion in mammals from a nocturnal ancestor after dinosaur extinction" (PDF). Nature Ecology & Evolution. 1 (12): 1889–1895. Bibcode:2017NatEE...1.1889M. doi:10.1038/s41559-017-0366-5. PMID 29109469. S2CID 20732677.
  353. ^ Stephan Lautenschlager; Pamela Gill; Zhe-Xi Luo; Michael J. Fagan; Emily J. Rayfield (2017). "Morphological evolution of the mammalian jaw adductor complex" (PDF). Biological Reviews. 92 (4): 1910–1940. doi:10.1111/brv.12314. PMC 6849872. PMID 27878942.
  354. ^ David M. Grossnickle (2017). "The evolutionary origin of jaw yaw in mammals". Scientific Reports. 7: Article number 45094. Bibcode:2017NatSR...745094G. doi:10.1038/srep45094. PMC 5359619. PMID 28322334.
  355. ^ Kyung Soo Kim; Jong Deock Lim; Martin G. Lockley; Lida Xing; Yeongi Choi (2017). "Korean trackway of a hopping, mammaliform trackmaker is global first from the Cretaceous". Cretaceous Research. 74: 188–191. doi:10.1016/j.cretres.2017.02.005.
  356. ^ Octávio Mateus; Marco Marzola; Anne S. Schulp; Louis L. Jacobs; Michael J. Polcyn; Vladimir Pervov; António Olímpio Gonçalves; Maria Luisa Morais (2017). "Angolan ichnosite in a diamond mine shows the presence of a large terrestrial mammaliamorph, a crocodylomorph, and sauropod dinosaurs in the Early Cretaceous of Africa". Palaeogeography, Palaeoclimatology, Palaeoecology. 471: 220–232. Bibcode:2017PPP...471..220M. doi:10.1016/j.palaeo.2016.12.049.
  357. ^ Elsa Panciroli; Roger B. J. Benson; Stig Walsh (2017). "The dentary of Wareolestes rex (Megazostrodontidae): a new specimen from Scotland and implications for morganucodontan tooth replacement". Papers in Palaeontology. 3 (3): 373–386. Bibcode:2017PPal....3..373P. doi:10.1002/spp2.1079. S2CID 90894840.
  358. ^ Meng Chen; Zhe-Xi Luo; Gregory P. Wilson (2017). "The postcranial skeleton of Yanoconodon allini from the Early Cretaceous of Hebei, China, and its implications for locomotor adaptation in eutriconodontan mammals". Journal of Vertebrate Paleontology. 37 (3): e1315425. Bibcode:2017JVPal..37E5425C. doi:10.1080/02724634.2017.1315425. S2CID 90035415.
  359. ^ A. V. Lopatin (2017). "Early Cretaceous mammals from the Khamryn-Us and Shalan-Ikher localities in Mongolia". Doklady Biological Sciences. 477 (1): 210–213. doi:10.1134/S0012496617060011. PMID 29299807. S2CID 8643849.
  360. ^ David W. Krause; Simone Hoffmann; Sarah Werning (2017). "First postcranial remains of Multituberculata (Allotheria, Mammalia) from Gondwana". Cretaceous Research. 80: 91–100. Bibcode:2017CrRes..80...91K. doi:10.1016/j.cretres.2017.08.009.
  361. ^ John R. Wible; Guillermo W. Rougier (2017). "Craniomandibular Anatomy of the Subterranean Meridiolestidan Necrolestes patagonensis Ameghino, 1891 (Mammalia, Cladotheria) from the Early Miocene of Patagonia". Annals of Carnegie Museum. 84 (3): 183–252. doi:10.2992/007.084.0302. S2CID 89869749.
  362. ^ A.O. Averianov; J.D. Archibald (2017). "Therian postcranial bones from the Upper Cretaceous Bissekty Formation of Uzbekistan" (PDF). Proceedings of the Zoological Institute of the Russian Academy of Sciences. 321 (4): 433–484.
  363. ^ Gang Han; Fangyuan Mao; Shundong Bi; Yuanqing Wang; Jin Meng (2017). "A Jurassic gliding euharamiyidan mammal with an ear of five auditory bones". Nature. 551 (7681): 451–456. Bibcode:2017Natur.551..451H. doi:10.1038/nature24483. PMID 29132143. S2CID 4466953.
  364. ^ Alexander Averianov; Alexey Lopatin; Pavel Skutschas; Stepan Ivantsov; Elizaveta Boitsova; Ivan Kuzmin (2017). "An enigmatic multituberculate mammal from the Early Cretaceous of Siberia, Russia". Journal of Vertebrate Paleontology. 37 (2): e1293070. Bibcode:2017JVPal..37E3070A. doi:10.1080/02724634.2017.1293070. S2CID 90137175.
  365. ^ a b Maxime Debuysschere (2017). "The Kuehneotheriidae (Mammaliaformes) from Saint-Nicolas-de-Port (Upper Triassic, France): a Systematic Review". Journal of Mammalian Evolution. 24 (2): 127–146. doi:10.1007/s10914-016-9335-z. S2CID 20444744.
  366. ^ Qing-Jin Meng; David M. Grossnickle; Di Liu; Yu-Guang Zhang; April I. Neander; Qiang Ji; Zhe-Xi Luo (2017). "New gliding mammaliaforms from the Jurassic". Nature. 548 (7667): 291–296. Bibcode:2017Natur.548..291M. doi:10.1038/nature23476. PMID 28792929. S2CID 205259206.
  367. ^ Zhe-Xi Luo; Qing-Jin Meng; David M. Grossnickle; Di Liu; April I. Neander; Yu-Guang Zhang; Qiang Ji (2017). "New evidence for mammaliaform ear evolution and feeding adaptation in a Jurassic ecosystem". Nature. 548 (7667): 326–329. Bibcode:2017Natur.548..326L. doi:10.1038/nature23483. PMID 28792934. S2CID 4463476.