2,3-Butanediol

(Redirected from 2,3-butanediol)

2,3-Butanediol is the organic compound with the formula (CH3CHOH)2. It is classified as a vic-diol (glycol). It exists as three stereoisomers, a chiral pair and the meso isomer. All are colorless liquids. Applications include precursors to various plastics and pesticides.

2,3-Butanediol
2,3-butanediol
Names
Preferred IUPAC name
Butane-2,3-diol
Other names
2,3-Butylene glycol
Pseudobutylene glycol
2,3-Dihydroxybutane
Butan-2,3-diol
Diethanol[citation needed] & Bis-ethanol
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.007.431 Edit this at Wikidata
EC Number
  • 208-173-6
UNII
  • InChI=1S/C4H10O2/c1-3(5)4(2)6/h3-6H,1-2H3
    Key: OWBTYPJTUOEWEK-UHFFFAOYSA-N
  • CC(C(C)O)O
Properties
C4H10O2
Molar mass 90.122 g·mol−1
Appearance Colorless liquid
Odor odorless
Density 0.987 g/mL
Melting point 19 °C (66 °F; 292 K)
Boiling point 177 °C (351 °F; 450 K)
Miscible
Solubility in other solvents Soluble in alcohol, ketones, ether
log P -0.92
Vapor pressure 0.23 hPa (20 °C)
Acidity (pKa) 14.9
1.4366
Thermochemistry
213.0 J/K mol
-544.8 kJ/mol
Hazards
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 1: Exposure would cause irritation but only minor residual injury. E.g. turpentineFlammability 1: Must be pre-heated before ignition can occur. Flash point over 93 °C (200 °F). E.g. canola oilInstability 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g. liquid nitrogenSpecial hazards (white): no code
1
1
0
Flash point 85 °C (185 °F; 358 K)
402 °C (756 °F; 675 K)
Lethal dose or concentration (LD, LC):
5462 mg/kg (rat, oral)
Related compounds
Related butanediols
1,4-Butanediol
1,3-Butanediol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Isomerism

edit

Of the three stereoisomers, two are enantiomers (levo- and dextro-2,3-butanediol) and one is a meso compound.[1][2] The enantiomeric pair have (2R, 3R) and (2S, 3S) configurations at carbons 2 and 3, while the meso compound has configuration (2R, 3S) or, equivalently, (2S, 3R).

Industrial production and uses

edit

2,3-Butanediol is prepared by hydrolysis of 2,3-epoxybutane:[3]

(CH3CH)2O H2O → CH3(CHOH)2CH3

The isomer distribution depends on the stereochemistry of the epoxide.

The meso isomer is used to combine with naphthalene-1,5-diisocyanate. The resulting polyurethane is called "Vulkollan".[3]

Biological production

edit

The (2R,3R)-stereoisomer of 2,3-butanediol is produced by a variety of microorganisms in a process known as butanediol fermentation.[4] It is found naturally in cocoa butter, in the roots of Ruta graveolens, sweet corn, and in rotten mussels. It is used in the resolution of carbonyl compounds in gas chromatography.[5]

During World War II research was done towards producing 2,3-butanediol by fermentation in order to produce 1,3-butadiene, the monomer of the polybutadiene used in a leading type of synthetic rubber.[6] It can be derived from the fermentation of sugarcane molasses.[7]

Fermentative production of 2,3-butanediol from carbohydrates involves a network of biochemical reactions that can be manipulated to maximize production.[8]

2,3-butanediol has been proposed as a rocket fuel that could be created on Mars by means of cyanobacteria and E. coli, shipped from Earth, working on resources available at the surface of Mars.[9]

2,3-Butanediol has been detected, in peppers, grape wine, anatidaes.

Reactions

edit

2,3-Butanediol undergo dehydration to form butanone (methyl ethyl ketone):[10]

(CH3CHOH)2 → CH3C(O)CH2CH3 H2O

It can also undergo deoxydehydration to form butene:[11]

(CH3CHOH)2 2 H2 → C4H8 2 H2O

References

edit
  1. ^ Boutron P (1992). "Cryoprotection of red blood cells by a 2,3-butanediol containing mainly the levo and dextro isomers". Cryobiology. 29 (3): 347–358. doi:10.1016/0011-2240(92)90036-2. PMID 1499320.
  2. ^ Wang Y, Tao F, Xu P (2014). "Glycerol dehydrogenase plays a dual role in glycerol metabolism and 2,3-butanediol formation in Klebsiella pneumoniae". Journal of Biological Chemistry. 289 (9): 6080–6090. doi:10.1074/jbc.M113.525535. PMC 3937674. PMID 24429283.
  3. ^ a b Heinz Gräfje, Wolfgang Körnig, Hans-Martin Weitz, Wolfgang Reiß, Guido Steffan, Herbert Diehl, Horst Bosche, Kurt Schneider and Heinz Kieczka "Butanediols, Butenediol, and Butynediol" in Ullmann's Encyclopedia of Industrial Chemistry, 2000, Wiley-VCH, Weinheim. doi:10.1002/14356007.a04_455
  4. ^ C. De Mas; N. B. Jansen; G. T. Tsao (1988). "Production of optically active 2,3-butanediol by Bacillus polymyxa". Biotechnol. Bioeng. 31 (4): 366–377. doi:10.1002/bit.260310413. PMID 18584617. S2CID 36530193.
  5. ^ "3,5-dinitrobenzoic acid". Combined Chemical Dictionary. Chapman and Hall/CRC Press. 2007.
  6. ^ "Fermentation Derived 2,3-Butanediol", by Marcio Voloch et al. in Comprehensive Biotechnology, Pergamon Press Ltd., England Vol 2, Section 3, p. 933 (1986).
  7. ^ Dai, Jian-Ying; Zhao, Pan; Cheng, Xiao-Long; Xiu, Zhi-Long (2015). "Enhanced Production of 2,3-Butanediol from Sugarcane Molasses". Applied Biochemistry and Biotechnology. 175 (6): 3014–3024. doi:10.1007/s12010-015-1481-x. ISSN 0273-2289. PMID 25586489. S2CID 11287904.
  8. ^ Jansen, Norman B.; Flickinger, Michael C.; Tsao, George T. (1984). "Application of bioenergetics to modelling the microbial conversion of D-xylose to 2,3-butanediol". Biotechnol Bioeng. 26 (6): 573–582. doi:10.1002/bit.260260603. PMID 18553372. S2CID 22878894.
  9. ^ "Rocket fuel made on Mars could propel astronauts back to Earth", Design Products & Applications, accessed 6 December 2021.
  10. ^ Nikitina, Maria A.; Ivanova, Irina I. (2016-02-23). "Conversion of 2,3-Butanediol over Phosphate Catalysts". ChemCatChem. 8 (7): 1346–1353. doi:10.1002/cctc.201501399. ISSN 1867-3880. S2CID 102135312.
  11. ^ Kwok, Kelvin Mingyao; Choong, Catherine Kai Shin; Ong, Daniel Sze Wei; Ng, Joy Chun Qi; Gwie, Chuandayani Gunawan; Chen, Luwei; Borgna, Armando (2017-06-07). "Hydrogen-Free Gas-Phase Deoxydehydration of 2,3-Butanediol to Butene on Silica-Supported Vanadium Catalysts". ChemCatChem. 9 (13): 2443–2447. doi:10.1002/cctc.201700301. ISSN 1867-3880. S2CID 99415384.