Edukira joan

Base

Artikulu hau Wikipedia guztiek izan beharreko artikuluen zerrendaren parte da
Artikulu hau "Kalitatezko 2.000 artikulu 12-16 urteko ikasleentzat" proiektuaren parte da
Wikipedia, Entziklopedia askea

Xaboiak base ahulak dira, gantz-azidoak sodio hidroxidoarekin edo potasio hidroxidoarekin nahasten direnean sortuak.

Kimikan, base bat protoiak onar ditzakeen edozein substantzia da. Definizio hau azidoei eta baseei buruzko Brønsted-Lowry teorian finkatutakoa da. Haatik, badaude baseen beste definizio batzuk, hala nola elektroi-bikoteen emaileak direla (Lewis), hidroxido anioieen iturri direla (Arrhenius) edo, zentzu zabalean, uretan disolbatzen direnean 7.0ko baliotik gorako pH-a daukaten disoluzioak sortzen dituzten substantziak direla. Base arrunten adibide dira, esaterako, sodio hidroxidoa eta amoniakoa.

Lehen hurbilketa batean, substantziak, disoluzio urtsuan, ioiak ematen dizkio baliabideari[1]. Adibide garbi bat potasio hidroxidoa da, KOH: formularekin​.

Base eta azido kontzeptuak kontrajartzen dira. Baliabidearen basikotasuna (edo alkalinitatea) neurtzeko, pOH kontzeptua erabiltzen da, zeina pHrekin osatzen den; era horretan, , (CNPTn -ren berdina da. Hori dela eta, azido zein baseetarako pH-a erabiltzea oso zabalduta dago[2][3].

Basearen kontzeptua Guillaume François Rouelle kimikari frantziarrak sortu zuen 1754an. Likido larrunkorrak ziren azidoak (adibidez, azido azetikoa) substantzia jakin batzuekin nahastean gatz solido bihurtzen zirela ikusi zuen. Substantzia hauek gatza eratzeko basea (oinarria)[4] zirela erabaki zuen. Hain zuzen, hortik datorkio izena.

Baseak, kimikoki, azidoen kontrakoak dira. Azido baten eta base baten arteko erreakzioari neutralizazio diotsote. Azidoek hidronio-ioiaren (H3O ) kontzentrazioa handitzen dute, eta baseek txikitu egiten dute. Baseek eta azidoek, elkarrekin erreakzionatzean, ura eta gatzak (edo beren disoluzioak) ekoizten dituzte.

Guztiz hidrolizatzen den eta pH-a 14 ingurura igotzen den baseari base indartsu deitzen zaio. Base indartsuek, azido indartsuek bezala, ehun biziak erasotzen dituzte, eta erredura larriak eragin ditzakete. Baseak ahulak ere izan daitezke, esaterako, azalerak garbitzeko erabiltzen den amoniakoa. Arrhenius baseek, uretan disolbagarriak izanik, pH-a 7.0tik gora daukaten disoluzioak sortzen dituzte. Alkaliak baseen azpimultzo berezia osatzen dute: beren ezaugarri nagusia da uretan disolbaturik hidroxido-ioiak (OH-) ematen dituztela.

Baseen propietate nagusiak hauek dira:

Basearen definizio desberdinak

[aldatu | aldatu iturburu kodea]
Sakontzeko, irakurri: «Azido-base erreakzio»

Hasierako definizioa Svante August Arrheniusek[5], 1887an, adierazitakoa da. Brønsted-Lowryren azido-base teoriak, Brønsted eta Lowryk 1923an formulatuak, dio substantzia alkalino bat (H ) protoi bat hartzeko gai dena dela[6].​ Definizio horrek aurrekoa barne hartzen du: aurreko adibidean, KOH-a OH ioien disoluzio batean disoziatzean, horiek dira basea protoi bat onartu ahal izateko. Teoria hori disolbatzaile ez-urtsuetan ere aplika daiteke[6].

Lewis-ek, 1923an, gehiago zabaldu zuen azidoen eta baseen definizioa, nahiz eta teoria horrek ez zuen eraginik izango urte batzuk geroago arte. Lewisen teoriaren arabera, basea elektroi pare bat eman dezakeen substantzia da[7]. OH ioiak, beste ioi edo molekulek NH3, H2O, etab. bezalako beste ioi edo molekulek bezala, loturarik gabeko elektroi-pare bat dute; beraz, base dira. Arrheniusen edo Brønsted eta Lowryren teoriaren araberako base guztiak Lewisen baseak dira.

  • Arrhenius baseen adibideak: , ,
  • Brønsted eta Lowry baseen adibideak: , , .

Oinarrien propietate orokor batzuk hauek dira[3]:

  • Hatzekin tratatzen direnean, biskositate edo xaboizko sentsazioa ematen dute, giza larruazaleko lipidoen saponifikazioaren ondorioz.
  • Kontzentrazio handian daudenean edo base sendoak direnean, kaustikoak dira; materia organikoarekiko korrosiboak, eta, substantzia azidoekin, bortizki erreakzionatzen dute.
  • Uretan disolbatzen dira, eta, horrela, ioietan disoziatzen dira, eta substantzia elektriko eroaleak dira.
  • Adierazleekin honela erreakzionatzen dute: tintaroi-papera urdin bihurtzen dute, eta, fenolftaleina proban, kolore arrosa agertzen da.
  • Zapore garratza dute[8].
  • Kaustikoak dira.

Arrhenius azido-basearen teoria

[aldatu | aldatu iturburu kodea]

Svante August Arrhenius kimikari suediarrak disoziazio elektrolitikoaren teoria proposatu zuen 1887an[9], zeinean elektrolitoak, ur-disoluzio edo ardatzetan, partzialki elektrikoki kargatutako ioietan disoziatzen ziren.

Elektrolitoak azido, base eta gatzetan sailkatzen dira. Arrheniusen arabera, zehazki, baseak, ur-disoluzioan, hidroxilo anioiak, OH, ematen dituzten substantziak dira; hau da, azido erradikal negatiboez ordezka daitezkeen hidroxilo talde bat edo gehiago dituzte gatzak sortzeko. Adibidez:

NaOH ⇌ Na OH-

Arrhenius baseen adibideak: sodio hidroxidoa (NaOH), potasio hidroxidoa (KOH), aluminio hidroxidoa (Al(OH)3).

Brønsted eta Lowry

[aldatu | aldatu iturburu kodea]

Johannes Nicolaus Brønsted kimikari daniarrak eta Thomas Martin Lowry ingelesak, 1923an, modu independentean, egungoa gainditzen zuen azidoen eta baseen portaerari buruzko teoria bat argitaratu zuten, urte haietan Arrhenius azido-basearen teoria, zeina edozein motatako disobatzaileari aplika zitekeen, Arrheniusena ur-disoluzioetarako soilik erabil zitekeen bitartean[10][11]. Teoria berri horren arabera, azido bat protoiak eman ditzakeen substantzia da, eta base bat onar ditzakeen substantzia da. Azido bat eta base bat elkartuak dira ekuazioaren bidez erlazionatzen direnean:

azido⇌ protoi base

Adibide gisa ditugu:

CH3COOH ⇌ H CH3COO-

NH4 ⇌ H NH3

CO3H- ⇌ H CO32-

Azidoak eta baseak ioiak edo molekula neutroak izan daitezke. H protoiaren solbatazioa kontuan hartuta disolbatzailea, bikote elkartu arteko erlazioa ur-disoluziotan, hauxe da:

A H2O ⇌ H3O B

kasu honetan, urak protoien hartzaile gisa jokatzen du, hau da, base bezala. Aldaketa honela orokortu daiteke:

azido 1 base 2 ⇌ azido 2 base 1

non 1. azidoa 1. basearekin elkartzen den eta 2. azidoa 2. basearekin. Kontuan izan, urak azido edo base gisa joka dezakeela.

Lewis azido-basearen teoria

[aldatu | aldatu iturburu kodea]
Sakontzeko, irakurri: «Lewisen azido eta baseak»

Brønsted eta Lowry-ren teoria ez da nahikoa substantzien azido edo oinarrizko portaera kasu guztiak ulertzeko, protoi trukearekin erreakzioetara mugatzen baita. Badira hidrogenoa ez duten eta portaera azidoa dutenak, adibidez, karbono dioxidoa, CO2, edo sufre trioxidoa, SO3, azidoen antzera jokatzen baitute, izan ere, oinarrizko oxidoen aurrean, hala nola kaltzio oxidoa, CaO, edo sodio oxidoa, Na2O, disolbatzaileen faltan eta, beraz, protoi transferentziarik gabe, esaterako, gatzak, sodio karbonatoa, CaCO3, edo sodio sulfatoa, Na2SO4, osatzeko erreakzionatzen dute. Erreakzioak honako ekuazio kimiko hauekin irudika daitezke:

CO2 CaO ⇌ CaCO3 SO3 Na2O ⇌ Na2SO4

Modu berean, Tionil klorido, Cl2SO, eta Potasio sulfitoaren, K2SO3, arteko erreakzioa sufre dioxido likidoan disolbatuta ekuazio honen arabera erreakzionatzen du:

2 Cl- SO2 SO32- 2 K ⇌ 2 Cl- 2 K 2 SO2

zeinak protolisirik ere ez duen; azido klorhidrikoaren (HCl) eta sodio hidroxidoaren (NaOH) arteko disoluzio urtsuko erreakzioa da Brønsted eta Lowryren teoriarekin azal daitekeena:

Cl- H3O Na OH- ⇌ Cl- Na 2 H2O

Erreakzio horiek oxigeno atomo batetik beste atomo batera elektroi bikote bat (lotura kobalente datiboaren bitartez) partzialki lagatzea dakarte.

Gertaera horien ondorioz, Gilbert Newton Lewisek 1923an[12] adierazi zuen eta 1938an azidoaren eta baseen teoria orokorragoa garatu zuen. Teoria horren arabera:

  • Azido bat elektroi bikote batek onar dezakeen substantzia oro da, molekularra edo ionikoa.
  • Basea elektroi bikote batek laga dezakeen substantzia oro da.

Baina Lewisen teoriak ez du ematen baseek azidoekin duten erreakzioaren zenbatespen kuantitatiboa. Hori dela eta, Pearsonen Teoria azido-base gogorra-biguna (HSAB siglekin ezaguna) izeneko ebaluazio kualitatiboa aplikatu ohi da. Ebaluazio horrek azido bigunek azkarrago erreakzionatzen dutela eta base bigunekin lotura sendoagoak eratzen dituztela deskribatzen du. Azido gogorrek, berriz, azkarrago erreakzionatzen dute, eta, base gogorrekin, lotura sendoagoak eratzen dituzte. Beste faktore guztiak berdin mantentzen dira[13]. Jatorrizko lanerako sailkapena oreka-konstanteetan oinarrituta zegoen Lewisen bi baseren erreakzioetarako Lewisen azido batengatik lehiatuz.

Baseen eta azidoen sailkapena HSAB printzipioan
Base gogorrak Tarteko baseak Bases bigunak
OH-, RO-, F-, Cl-, RCOO-, NO3-, NH3, RNH2, H2O, ROH, SO42-, CO32-, R2O, NR2-, NH2- Br-, C6H5NH2, NO2-, C5H5N RS-, RSH, I-, H-, R3C-, alkeno, C6H6, R3P, (RO)3P
Azido gogorra Tarteko azidoak Azido bigunak
H , Li , Na , K , Mg2 , Ca2 , Al3 , Cr3 , Fe3 , BF3, B(OR)3, AlR3, AlCl3, SO3, BF3, RCO , CO2, RSO2 Cu2 , Fe2 , Zn2 , SO2, R3C , C6H5 , NO Ag , Cu , Hg2 , RS , I , Br , Pb2 , BH3, karbeno

Azido gogorrek eta base gogorrek honako hauek izaten dituzte: Erradio ioniko/atomiko txikiak Oxidazio-egoera altua Polarizagarritasun txikia Elektronegatibotasun handia Energia gutxiko HOMO, baseen kasuan, eta energia handiko LUMO, azidoen kasuan[13].

Baseen ezaugarriak

[aldatu | aldatu iturburu kodea]

Boyleren arabera, honako propietate hauek dituzten substantziak dira baseak:

  • Zapore mingots bereizgarria dute.
  • Bere disoluzioek korronte elektrikoaren eroaleak dira.
  • Tintaroi paper gorria urdinera aldatzen dute.
  • Gehienak narritagarriak dira larruazalarentzat (kaustikoak), larruazaleko gantza disolbatzen baitute. Hainbat mailatan, suntsitzaileak dira giza ehunentzat. Hautsek, lainoek eta lurrunek narritadura eragiten dute arnasan, azalean eta begietan, eta lesioak, sudur-trenkadan.
  • Ukimen xaboitsua dute.
  • Uretan disolbagarriak dira (hidroxidoak batez ere)
  • Azidoekin erreakzionatzen dute gatza eta ura osatuz[14].

Base baten indarra

[aldatu | aldatu iturburu kodea]

Base sendo bat uretan erabat banatzen dena da; hau da, gehieneko ioi-kopurua ematen du. Potasio hidroxidoa base indartsu baten adibidea da.

Base ahul batek ere ioiak ekartzen dizkio medioari, baina molekula disoziatuen kopurua orekan dago ez daudenekin.

Kasu horretan, aluminio hidroxidoa orekan dago (deskonposatuz eta osatuz) sortzen dituen ioiekin.

Base baten formakuntza

[aldatu | aldatu iturburu kodea]

Base bat sortzen da oxido metaliko batek urarekin erreakzionatzen duenean (hidrolisia)[15]:

, beraz,
da.

Baseen nomenklatura

[aldatu | aldatu iturburu kodea]

Base bat sortzeko erabili elementuen izenetatik hartutako nomenklaturak, eta elkartu ioi hidroxilo (OH) batekin elementuaren balentzia-zenbakia hartuz eta konbinatuz (posizioa aldatuz), taulan erakusten den bezala:

Formula Tradizionala Stock IUPAC
CuOH Hidroxido kuprosoa Kobre hidroxidoa (I) Kobre hidroxidoa
Cu(OH)2 Hidroxido kuprikoa Kobre hidroxidoa (II) Kobre dihidróxidoa

Elementu batek bi balentzia baino gehiago dituenean, ez zaio nomenklatura tradizionalik jartzen. Balentzia txikiena erabiltzean, oson amaitzen da elementua hartzean, eta handiena erabiltzean, ikon[16][17]. IUPAC nomenklaturan, aurrizkien konformazio bat emango zaio elementuari erabilitako balentziaren arabera (Mono, Di, Tri, Tetra, Penta, Hexa, etab.), -hidroxi edo -oxidrilo amaierarekin batera, zeina () OH −1 kargadun ioia den[18].

Baseen adibideak

[aldatu | aldatu iturburu kodea]

Baseen adibide batzuk dira:

Baseak eta pH-a

[aldatu | aldatu iturburu kodea]

Lagin urtsu baten pH-a haren azidotasunaren neurri bat da[19]. Ur puruan, oxoni (H3O ) ioietan eta hidroxido (OH-) ioietan disoziatutako hamar milioi molekulatik bat, gutxi gorabehera, honako ekuazio honen arabera:

2H2O(l) → H3O (aq) OH(aq)

Kontzentrazioa, molaritatean neurtua (M edo moleak dm³-ko), zeinaren ioiak [H3O ] eta [OH] eta bere produktua uraren disoziazio konstantea den eta 10−7 balioa duen M. pH-a honela definitzen da: −log [H3O ], beraz, ur puruak 7ko pH-a du. Zenbaki horiek zuzenak dira 23° C-ra, eta, beste tenperatura batzuetan, zertxobait ezberdinak dira.

Base batek disoluzioaren hydronium ionak (H3O ) onartzen (hartzen) ditu, edo hidroxido ioiak (OH) ematen dizkio disoluzioari. Bi ekintza horiek hydronium ioien kontzentrazioa jaisten dute, eta, beraz, pH-a handitzen dute. Aitzitik, azido batek H3O ioiak ematen dizkio disoluzioari, edo OH-ak onartzen du. beraz, pH-a jaitsi egiten da.

Adibidez, sodio hidroxido mol bat (40 g) uretan disolbatzen bada disoluzio litro bat egiteko, hidroxido ioien kontzentrazioa [OH] = 1 mol/L bihurtzen da. Beraz, [H ] = 10−14 mol/L, eta pH = −log 10−14 = 14. Kontuan izan, kalkulu horretan, jarduera kontzentrazioaren baliokide dela suposatzen dela, eta kontzentrazio hori ez dela errealista 0,1 mol dm−3 baino gehiagoko kontzentrazioetan.

Disoziazioaren basea edo Kb konstantea basikotasun-neurri bat da. PKB pKaren erregistroaren ezezkotasuna da, eta, pKa   pKb = 14 balioen harreman sinplearen ondorioz, pKa balioekin lotutakoa.

Alkalinotasuna da disoluzio batek azidoak karbonato edo hidrogenokarbonatu puntuen baliokidetasunarekin neutralizatzeko duen ahalmenaren neurri bat.

Azidoen neutralizazioa

[aldatu | aldatu iturburu kodea]
Sakontzeko, irakurri: «Azido-base erreakzio»

Base indartsu bat uretan disolbatzen denean, sodio hidroxidoa kasu, hura deskonposatu egiten da (kasu horretan, sodio ioietan eta hidroxidoan):

NaOH → Na OH

Era berean, azido bat uretan disolbatzen bada disoziatu ere egiten da; adibidez, hidrogeno kloruroa (azido klorhidrikoa) disolbatzean, oxoni ioiak eta ioi kloruroak sortzen dira:

HCl H2O → H3O Cl

Bi disoluzioak ioi disoziatuekin nahasten direnean, H3O ioiak eta OH ioiak konbinatu egiten dira ur molekulak sortzeko:

H3O OH → 2H2O

Sodio hidroxido eta azido klorhidriko kopuru berberak disolbatzen badira, basea eta azidoa elkar neutralizatzen dute zehatz-mehatz, eta NaCl bakarrik uzten da hauspeakin ([gatz arrunta]) eta ur moduan. Modu orokorrean esan daiteke ezen[20]:

azidoa basea → gatza ura

Edozein azidoren isuriak neutralizatzeko, base ahulak erabili behar dira, hala nola sosa edo arrautza-zuringoa. Azido baten isurketa base indartsu batekin neutralizatzen saiatuz gero, hala nola sodio hidroxidoarekin edo potasio hidroxidoarekin, erreakzio exotermiko bortitza eragin daiteke, eta base beraren ekintzak azidoaren isurketa bezain txarra eragin dezake.

Ez-hidroxidoen alkalinotasuna

[aldatu | aldatu iturburu kodea]

Baseak, oro har, azido ugari neutralizatu ditzaketen konposatuak dira. Amoniakoa eta sodio karbonatoa baseak dira, baina substantzia horietako bakar batek ere ez du OH? multzorik. Bi konposatuek H onartzen dute uretan disolbatzen direnean:

Na2CO3 H2O → 2 Na HCO3 OH
NH3 H2O → NH4 OH

Hortik abiatuta, pH-a edo azidotasuna baseetako ur-soluzioetarako kalkula daiteke. Baseak emaile elektroniko bikote gisa ere zuzenean jarduteko:

CO₃2− H → HCO₃
NH₃ H → NH₄

Karbonoak base gisa jardun dezake, baita nitrogenoak eta oxigenoak ere. Hori gertatu ohi da litiozko butilo, alkoxido eta metalen amidetan, hala nola sodiozko amidan. Erresonantzia egonkorturik gabeko karbono-, nitrogeno- eta oxigeno-baseak oso indartsuak izaten dira; superbase diotsete, eta uraren azidotasun beragatik ezin dira egon ur-disoluzio batean. Erresonantzia egonkortzeak, baina, base ahulagoetan ahalbidetzen du, hala nola karboxilatoetan; adibidez, sodio azetatoa base ahula da.

Base sendo eta ahulak

[aldatu | aldatu iturburu kodea]
Potasio hidroxidoa (KOH)

Base sendo bat uretan erabat banatzen dena da, hau da, OH- ioien kopuru handiena ematen duena. Adibidez, potasio hidroxidoa oinarri sendoa da.

KOH → OH-    K (ur disoluzioan)

Bronsted-Lowry teoriak baseen indarra kuantifikatzen du, hau da, azidoaren protoi bat bereizteko gaitasuna. Kb konstantearen bidez neurtzen da, erreakzioaren oreka-konstantea azidoaren basearen konparazioarekin. Basikotasunaren konstantea zenbat eta handiagoa izan, orduan eta handiagoa izango da basearen indarra, eta, handiagoa, protoiak bereizteko duen gaitasuna. Oro har, basikotasun-konstantea pKb konstanteen basikotasun-indize gisa adierazten da. Adibidez, amoniakoa Bronsted-en base gisa deskriba daiteke:

Base polibasikoetarako, Kb1, Kb2, eta abarren disoziazio-konstanteen hainbat balio lor daitezke. Adibidez, ion fosfato bat hiru aldiz protonatuta egon daiteke.

Basearen potentziaren ezaugarria da, halaber, bere Ka (BH ) azido konjugatuaren azidotasun konstantea, non produktuaren basikotasuna Kb konstantea baita Ka (BH ) konstante batengatik, uraren produktu ionikoa soluzio urtsuentzat eta disolbatzaile orokorraren autoprotolisi konstantea.

Base sendoen beste adibide batzuk metal alkalinoen hidroxidoak eta lur alkalinoak dira:

Oinarri ahul batek ere OH- ioiak ematen dio medioari, baina orekan dago molekula disoziatuen eta ez daudenen kopurua.

Al(OH)
3
3OH
Al

Kasu horretan, aluminio hidroxidoa orekan dago (etengabe deskonposatuz eta osatuz) sortzen dituen ioiekin. Base baten basikotasun-konstanteak (Kb) haren disoziazio-maila adierazten du.

B base bat emanda, uretan disolbatzean, bere BH azido konjugatua lortzen da:

B(aq) H₂O(l) → BH (aq) OH-(aq)

Eta baliozkoa izango da hurrengo ekuazioa (soilik base ahulen bidez), zeinak kontzentrazioa basikotasunaren konstantearekin lotzen duen:

Karbanioien, amiden eta hidruroen 1. taldeko gatzak base are indartsuagoak izaten dira, haien azido konjokatuak oso ahulak direlako: hidrokarburoak, aminak eta dihidrogenoak, hurrenez hurren. Normalean, base horiek sortzen dira metal alkalino puruak gehituz –sodioa, esaterako– azido konjokatuari[21]. Superbase diotse eta ezin dira disoluzio urtsuan mantendu ioi hidroxidoa baino base indartsuagoak direlako, eta, beraz, ura azido konjokatutik desprotonatzen dute. Adibidez, ioi etòxidak (etanolaren base konjugatua) delakoak uraren presentzian erreakzio hau izaten du:

CH
3
CH
2
O
H
2
O
CH
3
CH
2
OH
OH

Zenbait superbase dira:

Azidoen neutralizazioa

[aldatu | aldatu iturburu kodea]

Base sendo bat, sodio hidroxidoa adibidez, uretan disolbatzen denean, hidroxido ioietan (-OH) eta sodio ioietan deskonposatzen da:

NaOH → Na OH

Antzera, azido klorhidrikoa edo hidrogeno kloruroa uretan disolbatzen da oxonio ioiak (H₃ O ) eta kloro ioiak osatuz:

HCl H₂O → H₃O Cl

Bi disoluzioak nahasten ditugunean, H₃O eta OH- ioiak konbinatu egiten dira ur-molekulak sortzeko:

H₃O OH → 2 H₂O

NaOH eta HCl kantitate berdinak disolbatzen baditugu, basea eta azidoa modu zehatzean neutralizatzen dira, NaCl bakarrik utziz (gatz arrunta) disoluzioan.

Base ahulak, hala nola soda edo arrautza-zuringoa, azido-isuriak neutralizatzeko erabil daitezke. Base sendoak erabiltzeak, hala nola sodio hidroxidoa edo potasio hidroxidoa, erreakzio exotermiko bortitza eragin lezake, jatorrizko azidoa isurtzea baino ondorio arriskutsuagoekin.

Baseak katalizatzaile gisa

[aldatu | aldatu iturburu kodea]

Oinarrizko substantziak erreakzio kimikoen disolbaezintasun-katalizatzaile heterogeneoak izateko erabil daitezke. Adibidez, oxido metalikoak, magnesio oxidoa, kaltzio oxidoa eta bario oxidoa, baita potasio fluoruroa eta zeolita batzuk ere. Trantsizioko metal askok katalizatzaile onak egiten dituzte, eta, horietako askok, oinarrizko substantziak osatzen dituzte. Oinarrizko katalizatzaile batzuk hidrogenazioetarako, lotura bikoitzeko migrazioetarako, Meerwein-Ponndorf-Verley murrizteko, Michaelen erreakziorako eta beste erreakzio askotarako erabili izan dira.

Erreferentziak

[aldatu | aldatu iturburu kodea]
  1. (Gaztelaniaz) Bases de la fisiología. Editorial Tebar 2007 ISBN 978-84-7360-266-2. (Noiz kontsultatua: 2023-03-07).
  2. (Gaztelaniaz) Sol 90. (2014-02-17). Materia. Britannica Digital Learning ISBN 978-1-62513-140-9. (Noiz kontsultatua: 2023-03-07).
  3. a b (Gaztelaniaz) Base (química). 2023-02-23 (Noiz kontsultatua: 2023-03-07).
  4. The Origin of the Term Base William B. Jensen Journal of Chemical Education • 1130 Vol. 83 No. 8 August 2006
  5. (Gaztelaniaz) Antón, Juan Luis; Andrés, Dulce María. (2015-06). Física y Química 3º ESO (LOMCE). Editorial Editex ISBN 978-84-9078-527-0. (Noiz kontsultatua: 2023-03-07).
  6. a b (Gaztelaniaz) Quimica 2. Ediciones Umbral ISBN 978-968-5607-20-9. (Noiz kontsultatua: 2023-03-07).
  7. (Gaztelaniaz) Best &Taylor. Bases Fisiológicas de la Práctica Médica. Ed. Médica Panamericana 2010 ISBN 978-950-06-0460-4. (Noiz kontsultatua: 2023-03-07).
  8. (Ingelesez) «Definition of BASE» www.merriam-webster.com (Noiz kontsultatua: 2023-03-07).
  9. «ChemTeam: Arrhenius dissociation article» www.chemteam.info (Noiz kontsultatua: 2023-03-07).
  10. «ChemTeam: J.N. Bronsted on Acids and Bases» www.chemteam.info (Noiz kontsultatua: 2023-03-07).
  11. (Gaztelaniaz) Thomas Lowry. 2020-05-05 (Noiz kontsultatua: 2023-03-07).
  12. Lewis, G.N. (1923). Valence and the Structure of Molecules (INGELESEZ). Nueva York: The Chemical Catalogo Co.
  13. a b IUPAC, Glossary of terms used in theoretical organic chemistry, consulta 16 Des 2006.
  14. (Gaztelaniaz) Hill, John W.. (1999). Química para el nuevo milenio. Pearson Educación ISBN 978-970-17-0341-0. (Noiz kontsultatua: 2023-03-08).
  15. Guía. David Vázquez. 1983. Originaletik artxibatua 2018-01-31n. 2018-01-30ean begiratua.
  16. (Gaztelaniaz) Baldor, F. A.; Baldor, F. J.. (2002-01-01). Nomenclatura química inorgánica. Selector, S.A. de C.V. ISBN 978-968-403-131-9. (Noiz kontsultatua: 2023-03-08).
  17. (Gaztelaniaz) Bermejo, María José García. (2003-07-22). Manual Del Auxiliar de Laboratorio. Temario Ebook. MAD-Eduforma ISBN 978-84-665-2879-5. (Noiz kontsultatua: 2023-03-08).
  18. (Gaztelaniaz) DIONISIO, ESCOBAR; ESTHER, MAYORAL; ANDREA, PASTOR; FRANCISCO, RUIZ CASADO. (2011-03-01). Ciencia y Tecnología. Nivel II. Cultura general. Ediciones Paraninfo, S.A. ISBN 978-84-9732-842-5. (Noiz kontsultatua: 2023-03-08).
  19. «pH | enciclopedia.cat» www.enciclopedia.cat (Noiz kontsultatua: 2023-03-08).
  20. (Gaztelaniaz) Base (química). 2023-02-23 (Noiz kontsultatua: 2023-03-08).
  21. McNaught, A.D.; Wilkinson, A (1997). IUPAC. Compendium of Chemical Terminology, the "Gold Book" (ingelesez) (2. argt.). Oxford: Blackwell Scientific Publications. ISBN 0-9678550-9-8. doi:10.1351/goldbook.S06135. Consultado el 22-abril-13.

Ikus, gainera

[aldatu | aldatu iturburu kodea]

Kanpo estekak

[aldatu | aldatu iturburu kodea]